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Abstract

Registration of 3D data is a key problem in many applications in computer vision, computer
graphics and robotics. This paper provides a family of minimal solutions for the 3D-to-3D reg-
istration problem in which the 3D data are represented as points and planes. Such scenarios
occur frequently when a 3D sensor provides 3D points and our goal is to register them to a 3D
object represented by a set of planes. In order to compute the 6 degrees-of-freedom transfor-
mation between the sensor and the object, we need at least six points on three or more planes.
We systematically investigate and develop pose estimation algorithms for several configurations,
including all minimal configurations, that arise from the distribution of points on planes. We also
identify the degenerate configurations in such registrations. The underlying algebraic equations
used in many registration problems are the same and we show that many 2D-to-3D and 3D-to-
3D pose estimation/registration algorithms involving points, lines, and planes can be mapped to
the proposed framework. We validate our theory in simulations as well as in three real-world
applications: registration of a robotic arm with an object using a contact sensor, registration of
planar city models with 3D point clouds obtained using multi-view reconstruction, and registra-
tion between depth maps generated by a Kinect sensor
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Abstract Registration of 3D data is a key problem in many
applications in computer vision, computer graphics and
robotics. This paper provides a family of minimal solutions
for the 3D-to-3D registration problem in which the 3D data
are represented as points and planes. Such scenarios occur
frequently when a 3D sensor provides 3D points and our
goal is to register them to a 3D object represented by a
set of planes. In order to compute the 6 degrees-of-freedom
transformation between the sensor and the object, we need
at least six points on three or more planes. We systemat-
ically investigate and develop pose estimation algorithms
for several configurations, including all minimal configura-
tions, that arise from the distribution of points on planes.
We also identify the degenerate configurations in such reg-
istrations. The underlying algebraic equations used in many
registration problems are the same and we show that many
2D-to-3D and 3D-to-3D pose estimation/registration algo-
rithms involving points, lines, and planes can be mapped to
the proposed framework. We validate our theory in simu-
lations as well as in three real-world applications: registra-
tion of a robotic arm with an object using a contact sensor,
registration of planar city models with 3D point clouds ob-
tained using multi-view reconstruction, and registration be-
tween depth maps generated by a Kinect sensor.
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1 Introduction and Previous Work

Pose estimation refers to the estimation of 6-degree-of-
freedom (6-DoF) object pose using sensor measurements
(e.g., images, 3D point clouds) and prior knowledge (e.g.,
a 3D model) of the object. This is achieved by registering
the 3D data from the sensor to the known 3D model of the
object. Such registration algorithms play a major role in nu-
merous applications including object recognition, tracking,
localization and mapping, augmented reality, and medical
image alignment. Recent progress in the availability of 3D
sensors such as Kinect (Shotton et al. 2011) at reasonable
cost has further accelerated the need for such problems. The
registration problem can generally be seen as two subprob-
lems: a correspondence problem and a problem of pose es-
timation given the correspondence. Both of these problems
are intertwined, and the solution of one depends on the other.
This paper addresses the solution to both problems, although
the major emphasis is on the second one.

Several 3D-to-3D registration scenarios are possible de-
pending on the representation of the two 3D datasets: 3D
points to 3D points, 3D lines to 3D planes, 3D points to 3D
planes, etc. (Olsson et al. 2006). Iterative closest point (ICP)
and its variants have been the gold standard in the last two
decades (Besl and McKay 1992; Fitzgibbon 2003). These al-
gorithms perform very well with a good initialization. Hence
the main unsolved problem is the initial coarse registration.
The registration of 3D lines to 3D planes and the registra-
tion of 3D points with normals to 3D planes were consid-
ered in Chen (1991), Grimson and Lozano-Pérez (1983). In
contrast to their work, we register 3D points without nor-
mals to 3D planes. Note that the presence of normals makes
the problem much simpler compared to the case without
the normals. Recently, there have been several registration
algorithms that focus on solving both the correspondence
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and pose estimation (Enqvist et al. 2009; Tu et al. 1999;
Li and Hartley 2007), primarily by casting the correspon-
dence problem as a graph theoretical one. The correspon-
dence problem maps to a class of NP-hard problems such as
minimum vertex cover (Enqvist et al. 2009) and maximum
clique (Tu et al. 1999). In this paper, we briefly explain the
correspondence problem by formulating it as a maximum
clique problem. Several variants of RANSAC (Fischler and
Bolles 1981; Raguram et al. 2008) and voting based algo-
rithms (Drost et al. 2010) have been developed for accurate
and efficient solutions, which is a different line of research.

The main focus of this paper is on solving for the point-
to-plane registration given the correspondence. Despite sev-
eral existing results in 3D-to-3D registration problems, the
registration of points to planes has received very little atten-
tion. However, in practice many registration problems can be
efficiently solved by formulating them as point-to-plane. It-
erative approaches exist for this problem (Chen and Medioni
1991; Olsson et al. 2006). In Olsson et al. (2006), the au-
thors specifically mention that their algorithms had difficul-
ties with point-to-plane registration and pointed out the need
for a minimal solution. The minimal solution developed here
provides a clear understanding of degenerate cases of the
point-to-plane registration.

The development of minimal solutions in general has
been beneficial in several vision problems (Kukelova and
Pajdla 2007; Gao et al. 2003; Stewenius et al. 2005a, 2005b;
Geyer and Stewenius 2007; Li and Hartley 2005). Minimal
solutions have been proposed for several computer vision
problems: auto-calibration of radial distortion (Kukelova
and Pajdla 2007), perspective three point problem (Gao
et al. 2003), the five point relative pose problem (Nistér
2003), the six point focal length problem (Stewenius et al.
2005a), the six point generalized camera problem (Stewe-
nius et al. 2005b), the nine point problem for estimating
para-catadioptric fundamental matrices (Geyer and Stewe-
nius 2007), the nine point radial distortion problem (Li and
Hartley 2005), the absolute pose with known vertical di-
rection (Kukelova et al. 2010), and the relative pose with
known gravity vector (Naroditsky et al. 2012). The last few
years have seen the use of minimal problems in various
applications (Snavely et al. 2006) and there are even uni-
fication efforts to keep track of all the existing solutions.1

Minimal solutions have proven to be less noise-prone than
non-minimal algorithms, and they have been quite useful
in practice as hypothesis generators in hypothesize-and-test
algorithms such as RANSAC (Fischler and Bolles 1981;
Raguram et al. 2008).

1http://cmp.felk.cvut.cz/minimal/.

1.1 Contributions

The main contribution of this paper is to systematically con-
sider several cases in which we know the distribution of
the points on the planes (how many points correspond to
each plane), developing a customized pose estimation al-
gorithm for each case. We denote each configuration as
Points(a1, a2, . . . , an) ↔ Planes(n), where n = {3,4,5,6}
is the number of distinct planes on which the points lie, and
ai is the number of points that lie on the ith plane. Although
the general framework is the same, the underlying theory
for each case is different and thereby leads to polynomial
equations of different degrees. We will show later that this
case-by-case analysis of point-to-plane registration not only
helps to develop efficient algorithms, but also avoids degen-
eracy problems that arise in using an algorithm that is inde-
pendent of the configurations. In addition to point-to-plane
registration, we will show that several existing registration
algorithms can be mapped to one of these different cases
of point-to-plane registration. Many problems in multi-view
geometry and registration appear different. However, the so-
lutions to such problems can be highly interconnected. The
differences between several problems in geometry can be
seen from the underlying constraints and the number of vari-
ables. For example, one can classify the problems in geom-
etry that compute rotation and translation into the following
categories that are hierarchically more complex.

– 5 degrees of motion up to a scale (5-point algorithm:
Nistér 2003)

– 6 degrees of motion (point-to-plane registration, 6-point
non-central motion estimation: Stewenius et al. 2005b)

– 11 degrees of freedom up to a scale (3 view 4 point case:
Nistér and Schaffalitzky 2006, 3 view 6 lines case)

– 12 degrees of freedom (minimal solution for generic cali-
bration, trifocal algorithms for non-central cameras, etc.)

This paper falls in the second category where we com-
pute 6 degrees of motion parameters. However, the underly-
ing equations are simpler than the ones used in generalized
motion estimation (Stewenius et al. 2005b).

To validate our theory we show an exhaustive set of sim-
ulations and three compelling real-world proof-of-concept
experiments: registration of a robotic arm with an object
using a contact sensor, registration of 3D point clouds ob-
tained using multi-view reconstruction on 3D planar city
models, and registration of Kinect depth data. Naroditsky
et al. (2011) showed that the external calibration of a 1D
range scanner with a 2D camera results in a point-to-plane
registration problem. This corresponds to the configuration
of Points(1,1,1,1,1,1) ↔ Planes(6) and hence can be seen
as a special case of our point-to-plane registration. Since in
their setup, all 3D points are coplanar, they have carefully
derived a lower-degree solution for this problem.

http://cmp.felk.cvut.cz/minimal/
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Fig. 1 The basic idea of coordinate transformation for pose estima-
tion. It is always possible to transform the sensor coordinate system
such that a chosen triplet of points (P1,P2,P3) lie respectively at the

origin, on the X axis, and on the XY plane. On the other hand, the
object coordinate frame can always be transformed such that Π1 coin-
cides with the XY plane and Π2 contains the X axis

This work is an extension of our conference paper (Ra-
malingam et al. 2010), where we show the general idea be-
hind point-to-plane registration and its generalization. The
additional contributions in this paper in comparison to Ra-
malingam et al. (2010) are summarized below:

1. In Ramalingam et al. (2010), we show the derivation of
point-to-plane registration algorithm for only one case
where 6 points are registered to 3 planes. In this paper,
we show the derivations for all cases.

2. We show the generalized registration algorithms for the
following four problems:

– Registration using three 3D point correspondences
(three different point-to-plane formulations are given)

– Mixed pose estimation using both 2D-to-3D and 3D-
to-3D correspondences

– Pose estimation using three lines (Dhome et al. 1989)
– Pose estimation for generalized cameras (Nistér 2004)

3. We tested the above four algorithms under the general-
ized registration framework in both real experiments and
simulations. These experiments are shown in Sect. 6.3
using data from a Kinect sensor.

1.2 Problem Statement

Our main goal is to compute the pose (3D translation and
3D rotation) of a sensor with respect to an object (or objects)
for which a 3D model consisting of a set of planes is already
known. The sensor provides the 3D coordinates of a small
set of points on the object, measured in the sensor coordinate
frame. We are given N points P 0

1 ,P 0
2 ,P 0

3 , . . . ,P 0
N from the

sensor data and M planes Π0
1 ,Π0

2 ,Π0
3 , . . . ,Π0

M from the
3D object. We subdivide the original problem into two sub-
problems:

– Compute the correspondences between the 3D points in
the sensor data and the planes in the 3D object.

– Given these correspondences, compute the rotation and
translation (Rs2w,Ts2w) between the sensor and the ob-
ject. We assume that the object lies in the world reference
frame, as shown in Fig. 1.

In this paper, we explain our solution to the second prob-
lem (pose estimation given the correspondences) in Sect. 2
before discussing the correspondence problem in Sect. 4.

2 The Pose Estimation Problem

In this section, we develop the algorithms for pose estima-
tion given the correspondences between the 3D points and
their corresponding planes. Here we assume that the cor-
respondences are already known—a method for computing
the correspondences is explained later, in Sect. 4. We sys-
tematically consider several cases in which we know the dis-
tribution of the points on the planes (how many points corre-
spond to each plane), developing a customized pose estima-
tion algorithm for each case. The correspondence between
a single point and a plane will yield a single coplanarity
equation. Since there are 6 unknown degrees of freedom in
(Rs2w,Ts2w), we need at least 6 point-to-plane correspon-
dences to solve the pose estimation problem. There are also
degenerate cases in which 6 correspondences are not suf-
ficient. Although the individual algorithms for the various
cases are slightly different, their underlying approach is the
same. The algorithms for all cases are derived using the fol-
lowing three steps:

– The choice of intermediate coordinate frames: We trans-
form the sensor and the object to intermediate coordinate
frames to reduce the degree of the resulting polynomial
equations. In addition, if the transformation results in a
decrease in the number of degrees of freedom in the pose
between the sensor and object, then the rotation R and the
translation T are expressed using fewer variables.

– The use of coplanarity constraints: From the correspon-
dences between the points and planes, we derive a set of
coplanarity constraints. Using a linear system involving
the derived coplanarity constraints, we express the un-
known pose variables in a subspace spanned by one or
more vectors.

– The use of orthonormality constraints: Finally, we use the
appropriate number of orthonormality constraints from
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the rotation matrix to determine solutions in the subspace
just described.

2.1 The Choice of Intermediate Coordinate Frames

As shown in Fig. 1, we denote the original sensor frame
(where the points reside) and the world reference frame
(where the planes reside) by S0 and W0, respectively. Our
goal is to compute the transformation (Rs2w,Ts2w) that
transforms the 3D points from the sensor frame S0 into the
world reference frame W0. A straightforward application of
coplanarity constraints in the case of 6 points would result
in 6 linear equations involving 12 variables (the 9 elements
of the rotation matrix Rs2w and the 3 elements of the trans-
lation vector Ts2w). To solve for these variables, we would
need at least 6 additional equations; these can be 6 quadratic
orthonormality constraints. The solution of such a system
may eventually result in a polynomial equation of degree
64 = 26, which would have 64 solutions (upper bound as
per Bezout’s theorem), and the computation of such solu-
tions would likely be infeasible for many applications.

To overcome this difficulty, we first transform the sensor
and world reference frames S0 and W0 to two new inter-
mediate coordinate frames, which we call S and W . After
this transformation, our goal is to find the remaining trans-
formation (R,T) between the intermediate reference frames
S and W . We choose S and W so as to minimize the num-
ber of variables in (R,T) that we need to solve for. A similar
idea has been used in other problems (Dhome et al. 1989).
We now define the transformations from the initial reference
frames to the intermediate frames and prove that these trans-
formations are always possible using a constructive argu-
ment.

2.1.1 Transformation from S0 to S

As shown in Fig. 1, we represent the ith point in S0 using the
notation P 0

i and the same point in S using Pi . We define the
transformation (Rs ,Ts) as the one that results in the points
(P1,P2,P3) satisfying the following conditions: (a) P1 lies
at the origin, (b) P2 lies on the positive X axis, and (c) P3
lies in the XY plane. Note that the points P 0

i are already
given, and the transformation to the points Pi can be easily
computed using the above conditions.

We denote the 3D points after the transformation as fol-
lows:

P1 =
⎛
⎝

0
0
0

⎞
⎠, P2 =

⎛
⎝

X2
0
0

⎞
⎠ , P3 =

⎛
⎝

X3
Y3
0

⎞
⎠ , and

Pi =
⎛
⎝

Xi

Yi

Zi

⎞
⎠ for i = {4,5,6}. (1)

2.1.2 Transformation from W0 to W

We similarly represent the ith plane in W0 using the nota-
tion Π0

i and the same plane in W using Πi . We define the
transformation as the one that results in the planes Πi sat-
isfying the following two conditions: (a) Π1 coincides with
the XY plane, and (b) Π2 contains the X axis.

Assume that Q0
1 and Q0

2 are two points on the line of
intersection of the two planes Π0

1 and Π0
2 . Let Q0

3 be any
other point on the plane Π0

1 . Let Q1, Q2, and Q3 denote
the same 3D points after the transformation from W0 to W .
The required transformation (Rw,Tw) is the one that maps
the triplet (Q0

1,Q
0
2,Q

0
3) to (Q1,Q2,Q3). Note that three

points Q0
i satisfying the description above can be easily de-

termined from the planes Π0
i , and the transformation from

points Q0
i to points Qi can be computed in the same way as

the transformation described above from points P 0
i to points

Pi .
We write the equations of the planes after the transforma-

tion as follows:

Z = 0 : Π1 (2)

B2Y + C2Z = 0 : Π2 (3)

AiX + BiY + CiZ + Di = 0 : Πi, for i = {3,4,5,6}.
(4)

2.1.3 Point-to-Plane Assignment

Depending on the particular configuration Points(a1, . . . , an)

↔ Planes(n) of the points and planes, we choose which
sensor points correspond to each of P1,P2, . . . , and which
object planes correspond to each of Π1,Π2, . . . , so as to
minimize the number of variables in the transformation be-
tween the intermediate frames.

In the remainder of this subsection, and in the follow-
ing Sects. 2.2 and 2.3, we explain the method in the context
of a particular example: the configuration Points(3,2,1) ↔
Planes(3). For this configuration, we may without loss of
generality assume the following correspondences between
the points and the planes:

Π1 ⇐= {P1,P2,P3}, Π2 ⇐= {P4,P5},
Π3 ⇐= {P6}. (5)

As a result of this assignment, the plane corresponding to the
three points {P1,P2,P3} and the plane Π1 are both mapped
to the XY plane. The final rotation (R) and translation (T)

between the intermediate sensor coordinate frame S and the
intermediate object coordinate frame W must preserve the
coplanarity of these three points and their corresponding
plane. Thus, the final transformation can be chosen so as to
map all points on the XY plane to points on the XY plane.



Int J Comput Vis

In other words, the rotation should be only along the Z axis
and the translation along the X and Y axes. There are two
pairs of rotation and translation that satisfy this constraint:

R1 =
⎛
⎝

R11 R12 0
−R12 R11 0

0 0 1

⎞
⎠ , T1 =

⎛
⎝

T1
T2
0

⎞
⎠ ;

R2 =
⎛
⎝

R11 R12 0
R12 −R11 0

0 0 −1

⎞
⎠ , T2 =

⎛
⎝

T1
T2
0

⎞
⎠ (6)

By choosing assignment (5) and separately formulating R1
and R2, we have minimized the number of degrees of
freedom to solve for in the transformation between the
intermediate frames of reference. Note that R1 and R2
are related to each other by a 180◦ rotation about the X
axis. Below, we explain the algorithm for solving for R1
and T1.

2.2 The Use of Coplanarity Constraints

To explain our method’s use of coplanarity constraints (and
orthonormality constraints), we continue with the example
of the specific configuration Points(3,2,1) ↔ Planes(3).
We know that the points P4 and P5 lie on the plane
Π2, whose equation is given by (3). This implies that
these points must satisfy the following coplanarity con-
straints:

B2(−R12Xi +R11Yi +T2)+C2Zi = 0, for i = {4,5} (7)

Similarly, the constraint from the third plane Π3 is given
below:

A3(R11X6 + R12Y6 + T1) + B3(−R12X6 + R11Y6 + T2)

+ C3Z6 + D3 = 0

(8)

Using the coplanarity constraints (7), (8), we construct
the following linear system:

⎛
⎝

B2Y4 −B2X4 0 B2
B2Y5 −B2X5 0 B2

A3X6 + B3Y6 A3Y6 − B3X6 A3 B3

⎞
⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎝

R11
R12
T1
T2

⎞
⎟⎟⎠

=
⎛
⎝

−C2Z4
−C2Z5

−C3Z6 − D3

⎞
⎠ (9)

The matrix A consists of known values and has rank 3. As
there are 4 variables in the linear system, we can obtain their

solution in a subspace spanned by one vector:

⎛
⎜⎜⎝

R11
R12
T1
T2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u1
u2
u3
u4

⎞
⎟⎟⎠ + l1

⎛
⎜⎜⎝

v1
v2
v3
v4

⎞
⎟⎟⎠ , (10)

where the values ui , vi are known, and l1 is the only un-
known variable.

2.3 The Use of Orthonormality Constraints

We can solve for the unknown variable l1 using a single
orthonormality constraint (R2

11 + R2
12 = 1) for the rotation

variables.

(u1 + l1v1)
2 + (u2 + l1v2)

2 = 1 (11)

By solving the above equation, we obtain two different solu-
tions for l1. As a result, we obtain two solutions for the trans-
formation (R1,T1). Since we can similarly compute two so-
lutions for (R2,T2), we finally have 4 solutions for (R,T).
Using the obtained solutions for (R,T), the transformation
between the original coordinate frames (Rs2w,Ts2w) can be
easily computed.

2.4 Visualization of Solutions

There is a geometric relationship between the multiple solu-
tions obtained for the transformation (R,T). For example, in
Fig. 2, we show the four solutions derived above, for a spe-
cial case in which the 3 planes are orthogonal to each other.
All of the solutions satisfy the same set of plane equations,
but they exist in different octants. Every solution is just a
rotation of another solution about one of the three axes by
180◦. If we slightly modify the planes so that they are no
longer orthogonal, the different solutions start to drift away
from each other.

Fig. 2 Left: Original setting. Right: Visualization of 4 solutions (each
denoted by diamonds, squares, circles, and triangles) for the points ly-
ing on the 3 orthogonal planes. The blue solution corresponds to the
original setting while the other 3 still satisfy the coplanarity and or-
thonormality constraints (Color figure online)



Int J Comput Vis

Table 1 Point-to-plane configurations and their solutions. Each row
of the table presents a different configuration, in which n denotes the
number of distinct planes and each ai refers to the number of points
that lie on the ith plane. The first two rows show the degenerate cases
for which there is an insufficient number of points or planes. The next
four rows consider non-minimal solutions using more than 6 points.
The remaining rows show several minimal configurations (each us-

ing exactly 6 points). The number of solutions is given, followed by
the average number of real (non-imaginary) solutions in parentheses
based on 1000 computations from the simulation described in Sect. 6.
Processing time was measured using a MATLAB implementation on a
2.66 GHz PC; the symbol † indicates the use of Groebner basis meth-
ods (Kukelova et al. 2008)

n (a1, . . . , an) Assignment # of Solutions Process time (ms)

< 3 – – degenerate –

n
∑

ai < 6 – degenerate –

3 (3,3,3) Π1 ⇐ {P1,P2,P3} 2 (2) 5
Π2 ⇐ {P4,P5,P6}
Π3 ⇐ {P7,P8,P9}

3 (3,3,2) Π1 ⇐ {P1,P2,P3} 2 (2) 5
Π2 ⇐ {P4,P5,P6}
Π3 ⇐ {P7,P8}

3 (3,3,1) Π1 ⇐ {P1,P2,P3} 2 (2) 5
Π2 ⇐ {P4,P5,P6}
Π3 ⇐ {P7}

3 (3,2,2) Π1 ⇐ {P1,P2,P3} 2 (2) 5
Π2 ⇐ {P4,P5}
Π3 ⇐ {P6,P7}

3 (4,1,1) – degenerate –

3 (3,2,1) Π1 ⇐ {P1,P2,P3} 4 (4) 6
Π2 ⇐ {P4,P5}
Π3 ⇐ {P6}

3 (2,2,2) Π1 ⇐ {P5,P6} 8 (4.4) 140†

Π2 ⇐ {P3,P4}
Π3 ⇐ {P1,P2}

4 (3,1,1,1) Π1 ⇐ {P1,P2,P3} 4 (2.8) 6
Π2 ⇐ {P4}
Π3 ⇐ {P5}
Π3 ⇐ {P6}

4 (2,2,1,1) Π1 ⇐ {P5,P6} 8 (3.6) 140†

Π2 ⇐ {P3,P4}
Π3 ⇐ {P2}
Π4 ⇐ {P1}

5 (2,1,1,1,1) Π1 ⇐ {P5,P6},Πi ⇐ {P6−i}, i = {3,4,5} 16 (5.8) 410†

6 (1,1,1,1,1,1) Πi ⇐ {P6−i+1}, i = {1,2,3,4,5,6} 16 (5.8) 1200†

3 Other Configurations

The example shown above is one of the easiest point-to-
plane registration algorithms to derive. Several harder con-
figurations also arise from the distribution of 6 (or more)
distinct points on 3 or more planes (see Table 1). We have
solved every case using the same intermediate transforma-
tion technique described above. All of the different scenar-
ios, the corresponding assignments of points and planes, and
the number of solutions are summarized in Table 1.

The key to solving each configuration is to determine
a point-to-plane assignment that minimizes the number of
variables appearing in the transformation (R,T) between
the intermediate frames. In general, such an optimal as-
signment can be found by considering different point-to-
plane assignments and checking the resulting coplanarity
constraint equations for the 6 points and their corresponding
planes. For example, in the configuration Points(3,2,1) ↔
Planes(3), the point-to-plane assignments given in (5) min-
imize the number of unknowns in Eq. (6) for (R,T).
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We show that the derivation is essentially the same as the
Points(3,2,1) ↔ Planes(3) configuration for the following
cases:

– Points(3,3,3) ↔ Planes(3)

– Points(3,3,2) ↔ Planes(3)

– Points(3,3,1) ↔ Planes(3)

– Points(3,2,2) ↔ Planes(3)

– Points(3,1,1,1) ↔ Planes(4)

Here we present a constructive example for the
Points(3,1,1,1) ↔ Planes(4) configuration. We also pres-
ent the Points(2,2,2) ↔ Planes(3) configuration, which is
less trivial and a representative case of the other configura-
tions.

3.1 Points(3,1,1,1) ↔ Planes(4)

First we perform the intermediate transformation as shown
in Sect. 2.1. We denote the 3D points Pi , i = {1, . . . ,6} us-
ing Eq. (1) and the planes Πj , j = {1, . . . ,6} using Eqs. (2),
(3) and (4). In this configuration, we use the following as-
signment:

Π1 ⇐= {P1,P2,P3}, Π2 ⇐= {P4},
Π3 ⇐= {P5}, Π4 ⇐= {P6} (12)

Same as the Points(3,2,1) ↔ Planes(3) configuration, this
assignment enables to restrict the rotation between the in-
termediate coordinate frames only along the Z axis, and
the translation along the X and Y axes. The rotation and
translation can therefore be described as in Eq. (6). For the
first set of (R1,T1), we obtain the following three equations
from the coplanarity constraints obtained from points lying
on Π2, Π3, and Π4:

⎛
⎝

B2Y4 −B2X4 0 B2
A3X5 + B3Y5 A3Y5 − B3X5 A3 B3
A4X6 + B4Y6 A4Y6 − B4X6 A4 B4

⎞
⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎝

R11
R12
T1
T2

⎞
⎟⎟⎠

=
⎛
⎝

−C2Z4
−C3Z5 − D3
−C4Z6 − D4

⎞
⎠ (13)

Since the rank of A is 3, we obtain the solution of the vari-
ables in a subspace shown in Eq. (10). We obtain two solu-
tions for l1 using an orthonormality constraint R2

11 +R2
12 = 1

and thereby two solutions for (R1,T1). Similarly, we obtain
two solutions for the second set (R2,T2). As a result, we
obtain a total of 4 solutions for this configuration.

Similar Configurations As described above, the (non-
minimal) configurations containing three points on a single
plane can be solved similarly. We assign the three points
{P1,P2,P3} to the plane Π1, which enables to formulate
the rotation and translation variables as in (6). Since these
configurations have more than 6 points (7, 8, and 9), we in-
clude additional coplanarity constraints in (13). This makes
the linear system (13) over-determined and a single solution
can be obtained as the least-squares solution. Since the so-
lution can be obtained for (R1,T1) and (R2,T2) separately,
we finally obtain 2 solutions.

3.2 Points(2,2,2) ↔ Planes(3)

In this configuration, the assignment

Π1 ⇐= {P5,P6}, Π2 ⇐= {P3,P4},
Π3 ⇐= {P1,P2} (14)

minimizes the number of variables as

R =
⎛
⎜⎝

R11 ∗ ∗
R21 R22 R23

R31 R32 R33

⎞
⎟⎠ , T =

⎛
⎝

T1
T2
T3

⎞
⎠ , (15)

where ∗ indicates terms that are multiplied by zero in the
coplanarity constraints (these values will be determined later
from the other 7 values in this rotation matrix).

Using the above 10 variables and 6 coplanarity con-
straints obtained from the 6 points and their corresponding
planes, we construct the following system, in which A is a
6 × 10 matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 X5 Y5 Z5 0 0 1
0 0 0 0 X6 Y6 Z6 0 0 1
0 B2X3 B2Y3 0 C2X3 C2Y3 0 0 B2 C2
0 B2X4 B2Y4 B2Z4 C2X4 C2Y4 C2Z4 0 B2 C2
0 0 0 0 0 0 0 A3 B3 C3

A3X2 B3X2 0 0 C3X2 0 0 A3 B3 C3

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R11
R21
R22
R23
R31
R32
R33
T1
T2
T3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

−D3
−D3

⎞
⎟⎟⎟⎟⎟⎟⎠

(16)
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The solution of this equation can be obtained in a sub-
space of dimension 4, resulting in 4 unknown parameters
(l1, l2, l3, l4).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R11
R21
R22
R23
R31
R32
R33
T1
T2
T3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a2
a3
a4
a5
a6
a7
a8
a9
a10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ l1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5
b6
b7
b8
b9
b10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ l2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ l3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
d2
d3
d4
d5
d6
d7
d8
d9
d10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ l4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
e2
e3
e4
e5
e6
e7
e8
e9
e10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

To solve for the unknown parameters, we use 4 orthonor-
mality constraints for the rotation variables:

R2
11 + R2

21 + R2
31 = 1 (18)

R2
21 + R2

22 + R2
23 = 1 (19)

R2
31 + R2

32 + R2
33 = 1 (20)

R21R31 + R22R32 + R23R33 = 0 (21)

By substituting all the rotation variables (17) including only
four unknowns (l1, l2, l3, l4) to (18)–(21), we obtain a final
set of equations (4 second-order equations). To efficiently
solve them, we used a software using Groebner basis method
(Kukelova et al. 2008). The solver finally provided 8 solu-
tions from the set of equations in this configuration.

Similar Configurations The following configurations can
be solved similarly (the corresponding point-to-plane as-
signments are shown in Table 1):

– Points(2,2,1,1) ↔ Planes(4)

The rotation and translation variables which appear in
the coplanarity constraints are the same as in (15). The
linear system (16) also has the same number of equations.
We therefore obtain 8 solutions.

– Points(2,1,1,1,1) ↔ Planes(5)

The rotation and translation variables are formulated
as

R =
⎛
⎝

R11 R12 ∗
R21 R22 R23
R31 R32 R33

⎞
⎠ , T =

⎛
⎝

T1
T2
T3

⎞
⎠ , (22)

which include 11 variables. The linear system (16) is con-
structed with a 6 × 11 matrix A whose rank is 6, so
the solution is obtained in a subspace of dimension 5
with 5 unknown parameters. These parameters are solved
using orthonormality constraints for the rotation vari-
ables. We have the following additional orthonormality
constraint in addition to the four Eqs. (18), (19), (20)
and (21).

R11R12 + R21R22 + R31R32 = 0 (23)

Finally 16 solutions are obtained from the set of equa-
tions.

– Points(1,1,1,1,1,1) ↔ Planes(6)

In this case, we need to solve for all 12 variables
of rotation and translation. The linear system (16) is
constructed with a 6 × 12 matrix A and the solution
is obtained in a subspace of dimension 6 with 6 un-
known parameters. Using six orthonormality constraints
for the rotation variables, the solver using Groebner ba-
sis method (Kukelova et al. 2008) provides 16 solu-
tions. In addition to the 5 orthonormality constraints used
for solving the case Points(2,1,1,1,1) ↔ Planes(5),
we use the following additional orthonormality con-
straint:

R12R13 + R22R23 + R32R33 = 0 (24)

As shown in Table 1, this requires the longest processing
time, which clarifies the advantage of using our interme-
diate transformation to reduce the variables to be solved
in the final set of equations.

3.3 Degenerate Cases

Table 1 includes several degenerate cases based on the num-
ber of points and planes. In addition, degeneracies can occur
based on the geometry of the planes. In the case of 3 planes,
if the 3 × 3 matrix consisting of all three normals has rank
less than 3 (e.g., if two of the three planes are parallel), it is
a degenerate configuration.

4 The Correspondence Problem

In the previous section, we assumed that the point-to-plane
correspondences were known. In this section, we briefly de-
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Fig. 3 (a) The problem of finding correspondences between clusters
of points Ci and planes Πj . (b) This can be formulated as a maximum
clique problem. Each node xij in this graph represents a mapping
between cluster Ci and plane Πj . An edge between two nodes is a

consistency edge, signifying that both of these mappings can occur
simultaneously without conflicting with the three constraints given in
Grimson and Lozano-Pérez (1983)

scribe a method to compute these correspondences. The ba-
sic idea of the correspondence problem and the geometri-
cal constraints involved in identifying feasible correspon-
dences are explained in detail in Grimson and Lozano-Pérez
(1983) using an interpretation tree approach. The same prob-
lem can also be formulated as graph-theoretical problems
such as independent set, vertex cover and maximum clique
(Grimson and Lozano-Pérez 1983; Enqvist et al. 2009;
Tu et al. 1999).

Our goal in this section is to compute all of the feasible
mappings (possible assignments) between the 3D points in
the sensor domain and planes in the object. Feasible map-
pings refer to correspondences that satisfy the many geo-
metrical constraints arising from the angles between the nor-
mals, pairwise distances, etc. (Grimson and Lozano-Pérez
1983). Although such constraints do not always guaran-
tee the correctness of the mappings, a wrong correspon-
dence seldom exists satisfying all the constraints. In addi-
tion, since we use them in hypothesize-and-test algorithms
such as RANSAC, outliers can be detected and removed.

In what follows, we briefly explain our approach using
the maximum clique problem formulation. First, we cluster
the points from the sensor into several planes, denoting the
ith cluster as Ci . Note that each cluster may contain multi-
ple points or even just a single point. As shown in Fig. 3(a),
our goal is to map these clusters to the corresponding planes
Πj in the object. In order to do this, we construct a graph as
shown in Fig. 3(b). Every node in this graph xij represents
a mapping between the cluster Ci (from the sensor) and the
plane Πj (from the object). An edge between xij and xkl

is referred to as a consistency edge that signifies that both
these mappings can occur simultaneously without conflict-
ing with the three constraints given in Grimson and Lozano-
Pérez (1983). The feasible correspondences between points
and planes can be obtained by finding the maximum clique
in the graph. A maximum clique for a graph refers to the
largest subset of nodes in which each pair of nodes in the
subset is connected by an edge. In the graph we constructed,

finding a maximum clique provides us a set of mappings in
which all possible pairwise consistencies are satisfied.

Several techniques can be used to solve these NP-hard
problems (Enqvist et al. 2009; Li and Hartley 2007). Since
we use minimal approaches for our applications, we are not
interested in the correspondences for all of the points in the
registration problem. Instead, we are concerned with iden-
tifying a small number of point-to-plane correspondences
(sufficient to resolve issues from degeneracies and outliers).
In fact, one of the main advantages of the proposed minimal
solution is that it only requires correspondences for a small
number of points. This enabled us to use a simple tree-based
search for finding the maximum cliques in the real-world
experiments described in Sect. 6.

5 A General Framework for Pose Estimation

We extend our solution for the point-to-plane problem to a
unified pose estimation framework for most 2D-to-3D and
3D-to-3D registrations. Several 2D-to-3D pose estimation
algorithms have been proposed in the literature (Horn 1987;
Dhome et al. 1989; Chen and Medioni 1991; Olsson et al.
2006; Haralick et al. 1994; Grimson and Lozano-Pérez
1983; Chen 1991; Nistér 2004). All these pose estimation
algorithms involve the registration of one set of geometri-
cal entities (points, lines, or planes) to another. For exam-
ple, in the case of generalized pose estimation, we register
three 3D points to the corresponding non-parametric projec-
tion rays from the cameras to compute the pose of the ob-
ject with respect to the camera (Nistér 2004). In the case of
2D-to-3D pose estimation using three lines, we can look at
this problem as a registration of three interpretation planes
(each formed by two projection rays corresponding to a sin-
gle line in the image) on three lines (Dhome et al. 1989). In
the case of 3D-to-3D line-to-plane registration, we register
lines from the sensor data to planes from the object (Chen
1991). In the case of 3D-to-3D point-to-point registration,
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Fig. 4 A general framework to transform a given registration problem
to a point-to-plane problem. Left: In the sensor data, we transform all
geometrical entities (points, lines and planes) to points. A point is pre-
served as a point. In the case of lines and planes we sample two and

three arbitrary points, respectively. Right: In the object data, we con-
vert all geometrical entities to planes. A plane is preserved as a plane.
Points and lines are parameterized using 3-plane and 2-plane represen-
tations, as shown

we register points from sensor data to points in the object
(Horn 1987). One could also propose registration algorithms
involving mixture of geometrical entities and thereby we
could have more than 20 2D-to-3D and 3D-to-3D registra-
tion scenarios. We emphasis that any of these pose estima-
tion algorithms involving any combination of geometrical
entities to any other combination could be transformed to
a point-to-plane registration algorithm and solved using the
following simple algorithm.

1. In the sensor data, we transform all the geometrical enti-
ties (points, lines and planes) to points. This is done using
2-point and 3-point representation of lines and planes re-
spectively as shown in Fig. 4.

2. In the object data, we transform all the geometrical enti-
ties to planes. This is done by 3-plane and 2-plane rep-
resentations for points and lines, respectively. Note that
the 3 planes passing through a point need not be orthog-
onal. Similarly, we can also use 2 non-orthogonal planes
to represent a line. The appropriate choice of these planes
plays a crucial role in obtaining an efficient pose estima-
tion algorithm.

3. After these transformations, we can use our point-to-
plane registration algorithm.

In the remaining part of this section, we show a few ex-
amples of registration problems that can be solved using the
theory developed for point-to-plane registration.

5.1 Registration using Three 3D Point Correspondences

Given three correspondences between 3D points in one ref-
erence frame to 3D points in another reference frame, the
goal is find a transformation to register the points. Let P1,
P2 and P3 correspond to three 3D points in the first refer-
ence frame. Let the corresponding 3D points in the second
reference frame be given by Q1, Q2 and Q3 respectively. In
order to register, we first parameterize the three points in the
second reference frame using planes. We show three differ-
ent ways of doing it as shown in Figs. 5(b), (c) and (d). In
Figs. 5(b) we consider three planes Π1,Π2 and Π3 satisfy-
ing the following conditions:

Fig. 5 We show the transformation of geometrical entities to map sev-
eral registration problems to a point-to-plane problem. (a) Let us con-
sider three 3D points P1, P2 and P3 in the first reference frame. (b),
(c) and (d) show the corresponding 3D points in the second reference
frame with different plane parameterizations. In (e) we show a mixed
registration scenario where the three points P1, P2 and P3 correspond
to one 3D line L1 and two 3D points Q2 and Q3 respectively

– Π1 contains all three points Q1,Q2 and Q3.
– Π2 contains two points Q1 and Q3.
– Π3 contains only one point Q3.

It is easy to construct the plane Π1 passing through three
points. In the case of Π2 and Π3, we chose one or two
additional random points to compute the plane parame-
ters. The registration problem is now equivalent to the
point-to-plane algorithm corresponding to the configuration
Points(3,2,1) ↔ Planes(3) where the following constraints
should be satisfied after the registration:

– Π1 must contain all three points P1,P2 and P3.
– Π2 must contain two points P1 and P3.
– Π3 must contain only one point P3.
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Fig. 6 The registration of three lines to three planes is shown. Let L1,
L2 and L3 be three 3D lines and the corresponding planes be given by
Π1, Π2 and Π3 respectively. We randomly sample two points on each
line and transform the given problem to a point-to-plane registration
problem Points(2,2,2) ↔ Planes(3)

Similarly, Figs. 5(c) and (d) show the transformations to the
following configurations:

– Points(3,1,1,1) ↔ Planes(4)

– Points(1,1,1,1,1,1) ↔ Planes(6)

In experiments we show that the configuration Points(3,2,1)

↔ Planes(3) is marginally better than the others.

5.2 Line-to-Plane Registration

Let us consider the 3D-to-3D line to plane registration al-
gorithm (Chen 1991) and 2D-to-3D pose estimation prob-
lem using three lines (Dhome et al. 1989). In Chen (1991)
we are given three 3D lines from the sensor data and three
3D planes from the object. Our goal is to compute the pose
(R,T) such that the three lines register on their correspond-
ing three planes. In Dhome et al. (1989) we are given three
3D lines in the world coordinate frame and their correspond-
ing three 2D lines in the image space. Our goal is to compute
the pose (R,T) that registers the 3D lines from the world to
the camera reference frame. In this problem, the rays corre-
sponding to imaged pixels of a single 3D line in space lie
on a plane. This plane is referred to as interpretation plane
in Dhome et al. (1989). The 2D-to-3D pose estimation using
three lines could thus be seen as a registration of three 3D
lines to three planes. Hence, both these problems (Dhome
et al. 1989; Chen 1991) can be seen as the registration of
lines to planes.

We transform the geometrical entities in one coordi-
nate frame to points and the other to planes. Here we
sample two points on every line and thus obtain 6 points
from three lines. In the other coordinate frame we al-
ready have three planes. This problem can be seen as the
case Points(2,2,2) ↔ Planes(3) of the point-to-plane reg-
istration algorithm as shown in Fig. 6. A total of 8 so-
lutions is obtained for this problem, which agrees with
the number of solutions in Dhome et al. (1989) and Chen
(1991).

Fig. 7 (a) The registration of three points to three lines: this
problem is transformed to the point-to-plane registration problem
Points(1,1,1,1,1,1) ↔ Planes(6). (b) A constructive approach to
show that it is possible to chose three planes Πx,Πy,Πz along ev-
ery line L that are parallel to the three orthogonal coordinate axes.
We chose a point on the line L and consider orthogonal lines Lx , Ly ,
Lz, passing through this point and parallel to the three axes. For every
i = {x, y, z} the plane Πi is given by the one that passes through the
pair of lines (L,Li )

5.3 Point-to-Line Registration

Consider the 3D-to-3D registration of three points P1,P2
and P3 on their corresponding lines L1,L2 and L3 respec-
tively. The underlying registration problem in the case of
generalized pose estimation is essentially same as (Nistér
2004). In Nistér (2004) the goal is to register three 3D points
to their corresponding projection rays in a non-parametric
imaging model.

Using our intermediate transformation technique, we
have the following:

P1 =
⎛
⎝

0
0
0

⎞
⎠ , P2 =

⎛
⎝

X2
0
0

⎞
⎠ , P3 =

⎛
⎝

X3
Y3
0

⎞
⎠ (25)

For every line we know a point Ai on the line and its
direction di :

Ai =
⎛
⎝

Aix

Aiy

Aiz

⎞
⎠ , di =

⎛
⎝

ai

bi

ci

⎞
⎠ , i = {1,2,3} (26)

Our goal is to transform the given point-to-line registration
to a point-to-plane one. In order to do this, we use 2-plane
parameterization for every line L such that the two planes
intersect uniquely at L. Without loss of generality, we chose
the following two planes for L1:

b1X − a1Y + D1 = 0 : Π1 (27)

c1X − a1Z + D2 = 0 : Π2 (28)

Using the point A on the line L we can compute D1 and D2.
Figure 7(b) shows the geometrical configuration of these
planes. The planes Π1 and Π2 are parallel to Z and Y axes
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respectively. It is possible to construct three planes Πx,Πy

and Πz passing through every line L in 3D space. In or-
der to do this, we first consider an arbitrary point P on
the line L. Let Lx,Ly and Lz be three orthogonal lines
passing through the point P . For every i = {x, y, z}, the
plane Πi is formed by the pair of intersecting lines (L,Li ).
Note that a line L lies on a plane Π only if its direc-
tion vector d and the plane’s normal n satisfy the condition
dT n = 0. Accordingly the normals of the planes Πx,Πy and
Πz are given by nx = (0, c1,−b1), ny = (c1,0,−a1) and
nz = (b1,−a1,0) respectively. It is important to observe that
the planes Πx,Πy and Πz are not orthogonal to each other.

Note that the normal vectors of the above two planes are
orthogonal to the direction vector of L1. Similarly we chose
the following planes for lines L2(Π3,Π4) and L3(Π5,Π6):

b2X − a2Y + D3 = 0 : Π3 (29)

c2X − a2Z + D4 = 0 : Π4 (30)

b3X − a3Y + D5 = 0 : Π5 (31)

c3X − a3Z + D6 = 0 : Π6 (32)

Now we have 6 point-to-plane correspondences:

Πi ⇐= {P1}, i = {1,2}
Πj ⇐= {P2}, j = {3,4} (33)

Πk ⇐= {P3}, k = {5,6}
The above mapping corresponds to the case Points(1,1,1,1,

1,1) ↔ Planes(6), which yields 16 different solutions.
However in this specific case, we show that it is possible
to solve the problem efficiently using an 8th degree poly-
nomial, yielding only 8 solutions. Due to the appropriate
choice of the planes, we minimize the number of variables
as

R =
⎛
⎝

R11 R12 ∗
R21 R22 ∗
R31 R32 ∗

⎞
⎠ , T =

⎛
⎝

T1
T2
T3

⎞
⎠ , (34)

where ∗ indicates terms that are multiplied by zero in the
coplanarity constraints (these values will be determined later
from the other 6 values in this rotation matrix). The copla-
narity constraints lead to the following system with 9 vari-
ables and 6 equations:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 b1 −a1 0
0 0 0 0 0 0 c1 0 −a1

b2X2 0 −a2X2 0 0 0 b2 −a2 0
c2X2 0 0 0 −a2X2 0 c2 0 −a2
b3X3 b3Y3 −a3X3 −a3Y3 0 0 b3 −a3 0
c3X3 c3Y3 0 0 −a3X3 −a3Y3 c3 0 −a3

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R11
R12
R21
R22
R31
R32
T1
T2
T3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−D1
−D2
−D3
−D4
−D5
−D6

⎞
⎟⎟⎟⎟⎟⎟⎠

(35)

Since the rank of A is 6, we compute the variables using three unknowns l1, l2 and l3:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R11
R12
R21
R22
R31
R32
T1
T2
T3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a2
a3
a4
a5
a6
a7
a8
a9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ l1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5
b6
b7
b8
b9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ l2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
c3
c4
c5
c6
c7
c8
c9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ l3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
d2
d3
d4
d5
d6
d7
d8
d9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(36)

To solve for the unknown parameters, we use 3 orthonor-
mality constraints for the rotation variables:

R2
11 + R2

21 + R2
31 = 1 (37)

R2
12 + R2

22 + R2
32 = 1 (38)

R11R12 + R21R22 + R31R32 = 0 (39)

We obtain a final set of equations by substituting all the
rotation variables using only three unknowns (l1, l2, l3) us-
ing (36). To efficiently solve the final set of equations de-
rived from the above 3 second-order equations, we used a
software for Groebner basis method (Kukelova et al. 2008).
A total of 8 solutions is obtained for this problem, which
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agrees with the 8 solutions in the case of generalized pose
estimation problem (Nistér 2004).

5.4 Pose Estimation using Both 2D-to-3D and 3D-to-3D
Correspondences

Classical pose estimation refers to the computation of the
pose of an object using three 2D-to-3D point correspon-
dences. We show that one can compute the pose when we
are given mixed correspondences. Let us assume that we are
given three 3D points P1,P2 and P3 in the first reference
frame. As shown in Fig. 5(e), let the corresponding geomet-
ric entities in the second reference frame be one 2D point
and two 3D points Q2,Q3 respectively. Let the projection
ray corresponding to the 3D point be given by L1. This is
equivalent to the following correspondences between the ge-
ometric entities.

– P1 lies on L1.
– P2 corresponds to Q2.
– P3 corresponds to Q3.

We transform the geometric entities in the second reference
frames to three planes as shown in Fig. 5(e). According to
this transformation we can solve the mixed pose estima-
tion using the point-to-plane algorithm for the configura-
tion Points(2,2,2, ) ↔ Planes(3) where the following con-
straints should be satisfied after the registration:

– Π1 must contain the points P1 and P2.
– Π2 must contain the points P1 and P3.
– Π3 must contain the points P2 and P3.

6 Experimental Results

First we show the experimental results for the different cases
of point-to-plane registration algorithms using simulations
and real experiments in Sects. 6.1 and 6.2 respectively. For
validating the point-to-plane registration algorithm, we con-
ducted two real experiments using a contact sensor and 3D
city models. In Sect. 6.3 we validate our theory on general-
ized registration algorithms using a Kinect sensor.

6.1 Simulations

We analyzed the performance of our minimal solutions in
simulations by generating 32 random planes inside a cube
of side length 100 units. We randomly sampled 320 points
on these planes within the cube. A test set was created by
transforming all 320 points using a ground-truth rotation and
translation, then adding Gaussian noise to each point.

We randomly selected k points from the test set accord-
ing to the point-to-plane configuration of the algorithm, then
computed the rotation and translation using the points and

the corresponding planes. The estimated transformation was
then evaluated by using it to transform the other 320 − k

points and computing the mean point-to-plane distance be-
tween the transformed points and their correct correspond-
ing planes. Each trial consists of generating a test set, then
repeating the selection of k points and transformation esti-
mation 100 times for this test set. Of the resulting 100 trans-
formations, the solution for the trial is the one transforma-
tion that provides the minimum mean distance.

Figure 8 plots errors in estimated rotation and transla-
tion with varying noise levels. For each configuration, the
errors plotted are the average of 100 trials. For each num-
ber of planes (n = 3,4,5,6), we compare our minimal so-
lutions for every possible configuration of 6 points (as well
as the non-minimal configurations for 3 planes that were in-
cluded in Table 1) to a least-squares solution for the same
number of planes using 12 or 20 points without orthonor-
mality constraints. In all cases, our minimal solutions yield
smaller errors than the least squares method. Note that the
least squares method completely fails in the case of three
planes. Thus, our transformation is useful not only for the
minimal configurations but also in non-minimal configura-
tions such as (3,3,3).

6.2 Real Experiments

6.2.1 Registration using a Contact Sensor

The first experiment, shown in Fig. 9, was conducted us-
ing a 6-degree-of-freedom robotic arm with a built-in con-
tact detection function. We used as the target object a par-
tial surface of an icosahedron, of which four of the 20 faces
are measurable, as shown in Fig. 9. The robot automatically
measured 100 points (contact positions) on the surface; each
point was measured by first moving the probe to a random x,
y position and then moving down towards the surface (in the
negative z direction) until it sensed a contact. We clustered
the points using a simple RANSAC-based plane fitting al-
gorithm. There were four main clusters corresponding to the
four planes of the icosahedron used in the experiment. Next,
the method described in Sect. 4 was used to find the corre-
spondences between these clusters and the planes in the 3D
model. Given these correspondences, we applied our point-
to-plane algorithm using several of the minimal 3-plane and
4-plane configurations. As in the simulations, we repeated
the following process to determine the solution: randomly
selecting k points, solving for the transformation, and evalu-
ating the mean distance of the transformed remaining points
to the 3D model. The final point-to-plane distance error for
all of the inliers was about 3 % of the overall size of the
scene. The least squares method failed completely for the
3-plane case (similar to the results shown in Fig. 8). In the 4-
plane case, the least-squares error was about 10 times larger
than the error of the minimal solutions.
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Fig. 8 Rotation and translation error for simulation data as a function
of the level of noise in the test set. The noise standard deviation is ex-
pressed as a percentage of the size of the object. The legends list the
configurations in order of decreasing error. (a, b) Results from our al-
gorithm for all non-degenerate configurations shown in Table 1. Note
that minimal solutions using 6 points provide lower errors than non-

minimal solutions, and solutions for configurations with larger number
of planes have lower errors. (b–j) Our minimal solutions compared to
least square methods (using 12 and 20 points) for the same number of
planes n: (c, d) n = 3, (e, f) n = 4, (g, h) n = 5, and (i, j) n = 6. Note
that in the 3-plane case (b), least square methods completely fail due
to rank degeneracy

Fig. 9 Real-world experiment
with a 6-degrees-of-freedom
robotic arm. (a) 3D contact
position data were collected for
100 points on the surface using
a built-in contact detection
function and built-in encoders of
the robotic arm. (b) Plane fitting
of the 3D points and the
correspondences of the points to
the planes in the CAD model
using the method of Sect. 4
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Fig. 10 (a) An input stereo pair of photos taken in Boston’s financial
district, overlaid with the points that we matched and reconstructed in
3D. (b) We identify four clusters in the reconstructed 3D points (a sin-

gle point and three planar clouds of points) using a plane-fitting algo-
rithm. (c) The four planes in the 3D city model corresponding to the
identified clusters shown in (b)

Fig. 11 Registering two point clouds, each generated by applying
multi-view reconstruction techniques to 15 images. (a) One of the
images used in 3D reconstruction. (b) superpixel segmentation of the
image shown in (a). (c) The 3D points from the first (blue) and second
(red) clouds are reprojected onto the superpixel image. The points
from the first point cloud are used to compute the superpixel plane

parameters, while the second point cloud is preserved as points. The
correspondence between the points from the second cloud and the
planes obtained from the first cloud are determined by the underlying
superpixel. (d) 3D model after merging the two partial reconstructions
from the two clusters (Color figure online)

6.2.2 Registration of 3D Point Clouds to 3D City Models

Given a plane-approximated coarse 3D model of the city of
Boston obtained from a commercial website (http://www.
3dcadbrowser.com/), we performed localization within the
map using a pair of images of a scene in Boston’s fi-
nancial district. To obtain 3D points from the image pair,
we matched Harris features and applied standard structure-
from-motion algorithms.

Using a RANSAC-based plane fitting algorithm, we fit
planes to the reconstructed 3D points. We computed 3 planes
from the reconstructed points as shown in Fig. 10. A coarse
initialization is manually provided and the nearest planes
in the 3D model are identified. All of the planes shown in
Fig. 10(c) (more than 10 planes) were used from the 3D
model of Boston. Using the method described in Sect. 4, we
obtained the correspondences between four clusters (a sin-
gle point and three planar clouds of points) and four planes
in the 3D model. The plane corresponding to the ground
had only one 3D point due to occlusion from pedestrians
and cars. (Note that it was important to have at least one
point on the ground in order to determine the vertical trans-
lation.) Applying our minimal algorithms for the 4-planes

case yielded results with an error of just 0.05 % of the over-
all size of the scene.

Our point-to-plane registration algorithm can also be
used for merging partial reconstructions obtained from
multi-view reconstruction techniques (Furukawa and Ponce
2010), as shown in Fig. 11. In order to obtain a 3D model
from 30 images provided by Furukawa and Ponce (2010),
we subdivide the images into two clusters of 15 images
each. We reconstruct 3D point clouds from each image clus-
ter and use the superpixel segmentation of a common im-
age to register them. The 3D points from the first cluster
are reprojected onto the superpixel image and used to com-
pute the plane parameters for each superpixel. (We eliminate
superpixels with insufficient or non-planar points.) The su-
perpixel segmentation of the common image gives us the
correspondences between the points in the second cluster
and the planes obtained from the first cluster. We obtain the
3D registration using a RANSAC framework, in which we
select three or more non-degenerate planes (see Sect. 3.3)
and the corresponding minimum number of points.

Previous work merging partial 3D models obtained from
multi-view 3D reconstruction has used non-minimal itera-
tive approaches (Ramalingam and Lodha 2003). However,
initializing with a minimal solution, such as the one de-

http://www.3dcadbrowser.com/
http://www.3dcadbrowser.com/
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Fig. 12 Top Row: 6 RGB
images are shown from a
sequence of 36 frames captured
using a Kinect sensor. Middle
Row: 6 corresponding depth
images. Bottom Row: Registered
3D model viewed from 3
different viewpoints

Fig. 13 Comparison between
Horn’s quarternion approach
(red dashed line) and the
point-to-plane method (blue
solid line) in simulations. (a)
and (b) show the rotation and
translation error plots
respectively (Color figure
online)

scribed here, may be critical for noisy 3D data. In addition,
there are two general advantages of point-to-plane rather
than point-to-point registration: (1) accuracy (Rusinkiewicz
and Levoy 2001), (2) compact representation of the 3D mod-
els (about a million 3D points are represented using few hun-
dred superpixel planes).

6.3 Experiments for Generalized Registration Algorithms

For validating our theory on generalized registration algo-
rithms, we tested the following algorithms in simulations
and real experiments:

– 3 point registration using Points(3,2,1) ↔ Planes(3)

configuration
– 3 point registration using Points(3,1,1,1) ↔ Planes(4)

configuration
– 3 point registration using Points(1,1,1,1,1,1) ↔

Planes(6) configuration
– Mixed pose estimation using Points(2,2,2) ↔ Planes(3)

configuration

The first three algorithms are based on 3D point corre-
spondences using the three different plane parameterizations

shown in Figs. 5(b), (c) and (d). The fourth algorithm is
based on the plane parameterization shown in Fig. 5(e).

In simulations, we compared the performance of the
first three algorithms with Horn’s quarternion method (Horn
1987). We generated 1000 random points inside a cube of
dimension 100 units. The test bed was generated by trans-
forming the points using a ground-truth rotation and trans-
lation, then adding Gaussian noise to each point. The dif-
ferent formulations lead to very similar performance with
the first case marginally better than the rest. We show the
performance of this case with respect to Horn’s method in
Figs. 13(a) and (b).

We used a Kinect sensor for validating our theory on
real data. We captured 36 Kinect image pairs (RGB and
depth) for an indoor office sequence as shown in Fig. 12.
The calibration information is known for the RGB image
and this allows us to compute the ray for every pixel. The
ray computation is necessary for testing our mixed pose es-
timation. We used SIFT features for matching keypoints be-
tween images. Using the SIFT correspondences in the RGB
image, we obtain 3D point correspondences from the depth
image. We observed that by using a hybrid point-to-plane
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Fig. 14 Comparison between
Horn’s quarternion approach
and the point-to-plane method
for real data. (a) and (b) show
the number of the difference in
the number of inliers and
average distance error (in
millimeters) respectively for the
36 consecutive frames captured
using a Kinect sensor

algorithm that chooses different primitives for registration
based on our generalized point-to-plane approach, our per-
formance is similar or marginally better than Horn’s ap-
proach. We compared the average Euclidean distance error
between corresponding points and the number of inliers as
shown in Figs. 14(a) and (b). During the RANSAC, we used
the same triplet for both Horn’s approach and the point-to-
plane method. Out of 35 successive registrations, the point-
to-plane method obtained 22 more inliers compared to the
Horn’s approach. The average distance error was 2.6 mil-
limeters more for the Horn’s method compared to the point-
to-plane method. Since the differences are computed for all
the 35 registrations, we consider this improvement marginal.
We show the 3D model registered from individual Kinect
frames in Fig. 12. As in any minimal approach, once the in-
liers are computed using our point-to-plane algorithm a stan-
dard least-squares registration is done between consecutive
frames using the selected inliers.

It is interesting to observe that the Horn’s quarternion
method is not a strictly minimal algorithm. On the other
hand, the point-to-plane approach uses only the minimal in-
formation from the point correspondences. When we trans-
form the points in the second reference to planes as shown
in Fig. 5, we strictly use the minimal information necessary
for the registration problem. The point-to-plane based ap-
proach can generate a lot more hypotheses for the same set
of points. For example, given correspondences between 3
points in two different reference frames, we can only gener-
ate one motion hypothesis using Horn’s method. However,
our method can use different transformation techniques and
generate more than 10 different motion hypotheses for the
same 3 point correspondences. This is analogous to several
minimal problems in vision. For example, the 8-point algo-
rithm can generate a single motion hypothesis for relative
motion using 8 correspondences. On the other hand, a 5-
point algorithm can generate

(8
5

)
different motion hypothe-

ses for the same 8 points. We believe that this ability to gen-
erate several meaningful nearby hypotheses is beneficial to
find the most optimal solution in a RANSAC framework.

7 Discussion

In Table 1, we show that the special handling of individ-
ual cases leads to efficient solutions. In addition to this ben-
efit, the specialized algorithms allow us to avoid degener-
acy problems. The matrix A arising from coplanarity is of
size 6 × 12 for the general case Points(1,1,1,1,1,1) ↔
Planes(6) and this matrix is used in computing the 12 vari-
ables in the motion (R,T). The rank of this matrix is 6 and
this allows us to use all 6 independent orthonormality con-
straints to extract the motion parameters. However, the rank
decreases to 5 if we use the data from a special configura-
tion Points(3,2,1) ↔ Planes(3). So the solution exists in a
subspace spanned by 7 unknown parameters. Since we have
only 6 independent orthonormality constraints, we will not
be able to extract the motion using this approach. On the
other hand, the specialized approach constructs a smaller A
matrix from coplanarity constraints and uses a more com-
pact representation for rotation variables in the equations
to avoid the degeneracy problems. This implies that the
knowledge of the point-to-plane configuration is necessary
to avoid degeneracy problems.

The development of minimal algorithms for registering
3D points to 3D planes provides opportunities for efficient
and robust algorithms with wide applicability in computer
vision and robotics. Since 3D sensors typically do not per-
ceive the boundaries of objects in the same way as 2D sen-
sors, an algorithm that can work with points on the surfaces,
rather than surface boundaries, is essential. In textureless 3D
models, for example, it is easier to obtain point-to-plane cor-
respondences than point-to-point and line-to-line correspon-
dences.
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