
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Loop-Free Routing in Low-Power and Lossy Networks
Guo, J.; Han, C.; Orlik, P.; Zhang, J.; Ishibashi, K.

TR2012-060 August 19, 2012

Abstract
IPv6 based Low-Power and Lossy Networks (LLNs) are emerging. Internet Engineering Task
Force (IETF) has developed an IPv6 Routing Protocol for LLNs (RPL), which is widely
considered as a feasible routing protocol for LLNs. However, routing loops and lack of a
loop-free local route repair mechanism are two major open issues to be addressed in RPL.
Based on the framework of RPL, this paper proposes a Loop-Free Routing Protocol for
LLNs (LRPL). We provide an innovative rank computation method and a loop-free local
route repair mechanism to eliminate routing loops in RPL. Simulation results show that the
proposed LRPL performs much better than conventional routing protocols in terms of packet
delivery rate, end-to-end packet delay, and routing overhead.

International Conference on Sensor Technologies and Applications (SENSORCOMM)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2012
201 Broadway, Cambridge, Massachusetts 02139

Loop-Free Routing in Low-Power and Lossy Networks

Jianlin Guo, Chuan Han, Philip Orlik, Jinyun Zhang

Mitsubishi Electric Research Laboratories

Cambridge, USA

{guo, chan, porlik, jzhang}@merl.com

Koichi Ishibashi

Communication Systems Technology Department

Mitsubishi Electric Corporation IT R&D Center

Ofuna, Japan

Ishibashi.Koichi@ce.MitsubishiElectric.co.jp

Abstract—IPv6 based Low-Power and Lossy Networks (LLNs)

are emerging. Internet Engineering Task Force (IETF) has

developed an IPv6 Routing Protocol for LLNs (RPL), which is

widely considered as a feasible routing protocol for LLNs.

However, routing loops and lack of a loop-free local route repair

mechanism are two major open issues to be addressed in RPL.

Based on the framework of RPL, this paper proposes a Loop-

Free Routing Protocol for LLNs (LRPL). We provide an

innovative rank computation method and a loop-free local route

repair mechanism to eliminate routing loops in RPL. Simulation

results show that the proposed LRPL performs much better than

conventional routing protocols in terms of packet delivery rate,

end-to-end packet delay, and routing overhead.

Keywords-loop-free routing; loop-free local route repair; low

power and lossy network; routing protocol for low power and lossy

network; directed acyclic graph; destination oriented directed

acyclic graph; bidirectional routes

I. INTRODUCTION

Low-Power and Lossy Networks (LLNs) are a class of
networks in which routers and their communication links are
constrained. LLN routers typically operate with constrains on
processing power, memory, power consumption, and lifetime.
Their communication links are characterized by high loss rate,
low data rate, low transmission power, and short transmission
range. There can be from a few dozen up to thousands of
nodes within a LLN. The characteristics of LLN require that
routing overhead must be much less than application data.
Therefore, routing in LLN is different from routing in mobile
ad-hoc networks. Conventional routing protocols, such as Ad-
hoc On-demand Distance Vector (AODV) [1] and Dynamic
Source Routing (DSR) [2], designed for mobile ad-hoc
networks are not suitable for routing in LLNs because of high
routing overhead. IETF has developed an IPv6 Routing
Protocol for LLNs (RPL) [3].

Based on routing metrics and constraints, RPL builds
Directed Acyclic Graph (DAG) topology to establish
bidirectional routes for LLNs. RPL routes are optimized for
traffic to or from one or more roots that act as sinks. A DAG is
partitioned into one or more Destination Oriented DAGs
(DODAGs), one DODAG per sink. DODAG is basic logic
structure in RPL. The sink in a DODAG is called the DODAG
root. RPL supports multipoint-to-point traffic (from nodes
inside the LLN to the DODAG root) and point-to-multipoint
traffic (from the DODAG root to nodes inside the LLN).
Support for point-to-point traffic is also available. The traffic
of LLN flows along the edges of DODAG, either upwards to
the DODAG root or downwards from the DODAG root.

Upward routes, having the DODAG root as destination, are
provided by the DODAG construction mechanism using the
DODAG Information Object (DIO) messages. The DODAG
root configures the DODAG parameters such as
RPLInstanceID, DODAG Version Number, DODAGID,
Rank, DTSN, etc. and advertises these parameters in DIO
messages. To join a DODAG, a node selects a set of parents
on the routes towards the DODAG root and configures its own
rank. It also selects a preferred parent as next hop for upward
traffic. Upon joining a DODAG, a node transmits the DIO
messages to advertise the DODAG parameters.

Downward routes, from the DODAG root to other nodes,
are provided by these nodes transmitting the Destination
Advertisement Object (DAO) messages. A node selects a
subset of its parents as its DAO parents. Three modes of
operation for downward routes are specified in RPL:

1) No downward routes maintained by RPL.
2) Storing mode of operation in which each router maintains

downward routing tables to all nodes in its sub-DODAG,
i.e. nodes that are deeper down in the DODAG. The DAO
messages propagate from the nodes towards the root,
where each intermediate node adds its reverse routing
stack to the DAO message.

3) Non-Storing mode of operation in which only the
DODAG root stores routes to all nodes in the network.
Each node unicasts DAO messages to the root, which then
calculates routes to all destinations by piecing together the
information collected from DAO messages. In non-storing
mode, downward traffic is sent by way of source routing.

RPL has been implemented and evaluated by researchers.
It has been shown that IPv6 with the RPL routing has a battery
lifetime of years [4]. RPL based routing for advanced metering
infrastructure in smart grid has been proposed [5], in which an
expected transmission time based rank computation method
has been provided and evaluated. Some considerations in RPL
implementation are presented in [6].

RPL is widely considered as a feasible routing protocol for
LLNs. However, there are several important issues left
unresolved. RPL is not a loop-free routing protocol.
Experiment shows that loops occur frequently and in 74.14%
of the 4114 snapshots, at least one loop was observed [7].
Even though RPL provides mechanism to resolve loops,
researchers have shown that the mechanism may cause even
worse turmoil than the routing loops themselves [8]. There is
no local route repair mechanism provided in RPL.

In this paper, we present an innovative rank computation
method for loop-free routing in LLNs. We also provide a

n

m
R = (1)

(2)
qn

pm
RRsp

+

+
=),(21

Figure 1. Routing Loop Example in the RPL Fi 1. Routin Lo E le i th RPL

method for local route repair without causing any routing loop.
The proposed local route repair method applies to both Storing
mode and Non-Storing mode of operation in RPL. Based on
the proposed rank computation method, a node can discover
multiple bidirectional routes towards the DODAG root.
Simulation results show the proposed Loop-Free Routing
Protocol for LLNs (LRPL) achieves almost 100% of packet
delivery rate with low end-to-end delay and frequent packet
transmission in large scale LLNs. It performs much better than
the conventional routing protocols.

II. RANK DEFINITION AND RANK SPLIT OPERATION

Rank plays very important role in the DODAG
construction and maintenance. The rank of a node defines a
position of the node relative to other nodes with respect to the
DODAG root. Each node maintains its own rank. Nodes
maintain their ranks based on parent-child relationship such
that a child must have a rank strictly greater than ranks of all
its parents. The DODAG root has no parent and therefore has
the lowest rank. The acyclic structure of a DODAG is
maintained as long as the rank of any node is strictly greater
than ranks of all its parents. It is safe for a node to decrease its
rank, as long as its new rank remains greater than ranks of its
parents. However, rank increase can cause routing loops
within a DODAG. RPL allows rank increase which is the
source of routing loops in RPL.

Figure 1 shows an example of RPL routing loop in which
the DODAG consists of 10 routers N1 to N10 and the root. The
integers are the respective ranks. The DODAG structure is
shown by directed edges. If the route from N1 to the root is
broken, N1 can poison the broken route by advertising a rank
of infinity. If this infinity rank advertisement is lost, N2 still
has N1 as its parent. N3 then advertises its rank equal to 3, N1
receives the advertisement from N3 and selects N3 as its parent.
Loop N1-N3-N2-N1 is created. The cause of this loop is that N1
increased its rank to infinity.

The routing loops can be avoided if nodes do not increase
their ranks. In order to meet this requirement, we define the
rank R as a proper fraction such that:

where m and n are integers such that 0 ≤ m < n.

Even though the rank is defined as proper fraction, it is
maintained as two integers, numerator m and denominator n.
The fractional value of rank is only used in rank operations
such as rank comparison.

The principle of this innovative rank definition is that there are
an infinite number of proper fractions between any two proper
fractions. This principle guarantees that given any two ranks,
there always exists a rank in between them. However, integer
rank does not possess such property because there is no integer
existing between any two consecutive integers.

For any two ranks R1 = m/n and R2 = p/q, the rank split
operation is defined as:

It can be shown that if R1 < R2, then R1 < sp(R1,R2) < R2.

In this paper, we define the root rank as 0/1 and the infinite
rank as 1/1. The infinite rank can not be advertised in the DIO
messages.

III. DODAG CONSTRUCTION

In RPL, a node may act as a router or a leaf node. To
construct a new DODAG, the DODAG root transmits a DIO
message containing new (RPLInstanceID, DODAGID) tuple.
To construct a new DODAG Version, the DODAG root
transmits a DIO message with an increased DODAG Version
Number. The DODAG Version Number is monotonically
incremented by the DODAG root. The DIO message is
transmitted via link-local multicasting to all-RPL-nodes.
Nodes obtain the DODAG parameters configured by the
DODAG root in received DIO messages. A node must keep
the DODAG parameters unchanged except Rank and DTSN.

In this paper, we use symbols such as Ni, Nj, Nk, etc. to
denote nodes and use R(Ni) to denote the rank of node Ni. For
simplicity, we assume RPLInstanceID and DODAGID are
fixed. To construct and maintain a DODAG, a node Ni
maintains following state parameters:

 TABLE 1. Node State Parameters

R(Ni) Rank of node Ni as proper fraction m/n

P(Ni) Parent set of node Ni

p(Ni) Preferred parent of node Ni

c(Ni) The minimum cost from node Ni to the

DODAG root

c(Ni,Nj) Cost from node Ni to node Nj

VN(Ni) DODAG Version Number maintained by

node Ni

DR-SN(Ni) DODAG repair sequence number of node Ni

Tp Parent threshold

The cost can be hop count, expected transmission time,
and other options. For a node, if the number of parents is less
than Tp, the node can add more parents into its parent set if
such parents are available. A node Ni maintains its parent set

P(Ni) such that for each parent)(ip NPN Î , R(Ni) > R(Np).

Initially, all nodes do not belong to any DODAG and do
not transmit the DIO messages because a node can transmit
the DIO messages only if the node joins a DODAG. The
DODAG root initiates a new DODAG construction process by

Figure 2. The DODAG Construction Process

configuring the DODAG parameters and transmitting the DIO
messages to advertise the DODAG parameters.

In response to receiving a DIO message, a node can update
its state parameters only if one of the following conditions
holds:

(1) The node wants to join a DODAG
(2) The DODAG Version Number in the DIO

message is greater than the DODAG Version
Number maintained by receiving node

(3) The DODAG Version Number in the DIO
message equals the DODAG Version Number of
receiving node, and the rank in the DIO message
is lower than the rank of receiving node.

Upon receiving a DIO message transmitted by the
DODAG root containing new (RPLInstanceID, DODAGID)
tuple or new DODAGVersionNumber, the first hop nodes of
the DODAG root may join new DODAG or new DODAG
Version. To do so, the first hop nodes add the DODAG root
into their parent set and store the DODAG parameters. The
first hop nodes keep all DODAG parameters unchanged
except the rank. The first hop nodes set their ranks such that
their ranks > 0/1 and their ranks <= sp(0/1, 1/1) = 1/2. Upon
joining a new DODAG or a new DODAG Version, the first
hop routers generate and transmit the DIO messages to
advertise the DODAG parameters.

Upon receiving the DIO messages transmitted by the first
hop routers, the second hop nodes of the DODAG root that
want to join new DODAG or new DODAG Version perform
similar procedure as the first hop nodes do. However, in this
case, the second hop nodes may receive multiple DIO
messages from the first hop routers. The second hop nodes use
received DIO messages to calculate their ranks and select a
subset of the DIO message senders as their parents. To
calculate its rank, a second hop node find the maximum rank,
Rank_Max, among all ranks of its parents and sets its rank
such that its rank > Rank_Max and its rank <= sp(Rank_Max,
1/1). The second hop routers then generate and transmit the
DIO messages same as the first hop router do.

A first hop node of the DODAG root may also receive the
DIO messages transmitted by other first hop routers. The first
hop node may perform same procedure as the second hop
nodes do to select more parents.

This DIO message propagation process continues until all
nodes in network receive the DIO messages, store the
DODAG parameters, select parents and determine ranks.

Figure 2 shows the process of DODAG construction,
where router Nj transmitted the DIO message containing
VN(Nj), R(Nj), c(Nj), etc. and node Ni receives the DIO
message. VN(Ni), R(Ni), P(Ni), and p(Ni) are state parameters
maintained by node Ni.

Upon receiving the DIO message, node Ni first checks if
the received DIO message is malformed or was received
already. If yes, Ni discards the DIO message. If no, Ni checks
if Nj equals Ni. If yes, Ni discards the DIO message, because
Ni just received its own DIO message. Otherwise, Ni processes
the DIO message further.

Ni checks if a new DODAG is advertised in the DIO
message. If yes, Ni joins new DODAG. It initializes its state
parameters as VN(Ni) = VN(Nj), P(Ni) = {Nj}, p(Ni) = Nj,
R(Ni) = sp(R(Nj),1/1), c(Ni) = c(Nj) + c(Ni, Nj), and stores
other DODAG parameters. Ni then resets its trickle timer to
transmit the DIO message and schedules a DAO message
transmission if Nj is also selected as its DAO parent.
Otherwise, the DIO processing goes to next step.

Ni checks if the VN(Nj) > VN(Ni). If yes, Ni joins new
DODAG Version. It initializes its state parameters same as
joining new DODAG. Ni also clears downward routing tables
if the mode of operation is Storing. Ni then resets its trickle
timer to transmit the DIO message and schedules a DAO
message transmission if Nj is also selected as its DAO parent.
Otherwise, the DIO processing goes to next step.

Ni checks if VN(Nj) < VN(Ni). If yes, it discards the DIO
message. If VN(Nj) = VN(Ni) and R(Nj) ≥ R(Ni), Ni discards
the DIO message. If VN(Nj) = VN(Ni) and R(Nj) < R(Ni), Ni
checks if it is necessary to update its state parameters by using
received the DIO message. If no, Ni discards the DIO message.
If yes, Ni updates state parameters. If Nj is not in its parent set
P(Ni) and |P(Ni)| < Tp, Ni adds Nj into its parent set such that
P(Ni) = P(Ni)U{Nj} and updates its preferred parent as

and the minimum cost as

If there are multiple parents that have the same minimum
cost, Ni can randomly pick one preferred parent. Ni then
schedules a DAO message transmission if Nj is also added into
its DAO parent set. If Nj is already in DAO parent set, Ni
makes necessary updates without scheduling the DAO
message transmission.

A node can receive multiple DIO messages from neighbors
within the same DODAG. These DIO messages can be used to
select a subset of the DIO message transmitters as its parents
and determine its rank. Among all its parents, the node selects

(4)))(())(,()(iiii NpcNpNcNc +=

(3))}(),({minarg)(
)(

kki
NPN

i NcNNcNp
ik

+=
Î

Figure 3. The DODAG Construction Example

one parent with the minimum cost as its preferred parent to be
used as the next hop along upward routes to the root.

Figure 3 shows an example of the DODAG construction.
Initially, nodes N1 – N6 are not members of any DODAG
version, and their parent sets are empty. The DODAG root sets
its rank to 0/1, the DODAG version number to 1, and its
parent set to empty.

The root transmits the DIO message carrying its DODAG
version number 1, and rank 0/1. Nodes N1, N2 and N3 receive
the DIO message. Because nodes N1, N2 and N3 are not
members of the newly advertised DODAG, N1, N2 and N3
joins the DODAG and set their DODAG version numbers to 1,
ranks to sp(1/1, 0/1) = 1/2, and select the root as their
preferred parent.

Upon joining the DODAG, nodes N1, N2, and N3 transmit
the DIO messages with DODAG version number 1 and rank
1/2. The DIO messages from routers N1, N2, and N3 are
discarded by the root because the DODAG version number in
the DIO messages equals the DODAG version number of the
root, and the rank in the DIO messages is greater than the rank
of the root.

N1 discards the DIO message from N2 because the
DODAG version number in the DIO message equals the
DODAG version number of N1, and the rank in the DIO
message equals N1’s rank. Similarly, N2 discards the DIO
messages from N1 and N3, and N3 discards the DIO message
from N2.

N4 receives DIO messages from N1 and N2. Because N4 is
not a member of the advertised DODAG, N4 joins the
DODAG and sets its DODAG version number to 1, its rank to
sp(1/1, 1/2) = 2/3, and select N1 as the preferred parent and N2
as parent. Similarly, N6 receives the DIO messages from N2
and N3, joins the DODAG, sets its DODAG version number to
1, rank to sp(1/1, 1/2) = 2/3, adds N2 and N3 into its parent set,
and selects N3 as the preferred parent. N5 receives the DIO
messages from N1, N2, and N3. Because N5 is not a member of
the advertised DODAG, N5 joins the DODAG and sets its
DODAG version number to 1, its rank to sp(1/1, 1/2) = 2/3.
However, N5 only selects N2 as its parent and preferred parent
even though N2 may select N1, N2, and N3 as parents.

Upon joining the DODAG, nodes N4, N5 and N6 also
transmit their DIO messages. These DIO messages are
discarded by their neighbors because the DODAG version
number in the DIO messages equals the DODAG version
number of the neighbors, and the rank of N4, N5 and N6 are not
lower than ranks of the neighbors.

IV. DODAG LOCAL REPAIR

The DODAG local repair is performed by using two new
RPL control messages, the DODAG Repair Request (DR-REQ)
message and the DODAG Repair Reply (DR-REP) message.

The DR-REQ message consists of Nq, R(Nq), VN(Nq), DR-
SN(Nq), NL-REQ, and other fields. The Nq is the identifier of
node generating DR-REQ message, R(Nq) is the rank of Nq,
VN(Nq) is the DODAG Version Number of Nq, DR-SN(Nq) is
the DODAG repair sequence number of Nq, NL-REQ is the
node list traveled through by DR-REQ message and present
only in Non-Storing mode. In addition, the DR-REQ message
may also have a hop count field and a maximum hop count
field. Once hop count reaches the maximum hop count, the
DR-REQ message is discarded.

The DR-REP message consists of Nq, R(Nq), DR-SN(Nq),
D, R(Np), c, VN(Np), NL-REP, and other fields. Nq, R(Nq) and
DR-SN(Nq) are same as in the DR-REQ message. Nq is
destination of DR-REP message. D indicates the travel
direction of DR-REP message, R(Np) is the rank of router
generating the DR-REP message if D = UP and is the rank of
router transmitting the DR-REP message if D = DOWN, c is
the minimum cost of link(s) from the router transmitting the
DR-REP message to the DODAG root, VN(Np) is the
DODAG Version Number of DR-REP message generator, and
NL-REP is combination of NL-REQ in the DR-REQ message
and node list travelled by upward DR-REP message. D and
NL-REP are present only in Non-Storing mode.

When a node detects a broken route by using mechanisms
provided in RPL, it may need to discover new parents. The
DODAG is locally repaired by node transmitting a DR-REQ
message. The DR-REQ message is transmitted by the DR-
REQ message generator via link-local multicasting to all-RPL-
nodes.

Upon receiving a DR-REQ message, a link-local neighbor
discards the DR-REQ message if it does not have a route to
the DODAG root. If the link-local neighbor is the DODAG
root or a router that has a route to the DODAG root and a rank
lower than the rank carried in the DR-REQ message, this
neighbor generates a DR-REP message. If the link-local
neighbor has route to the DODAG root and its rank is greater
than or equal to the rank carried in the DR-REQ message, this
neighbor forwards the DR-REQ message to its preferred
parent.

In Storing mode, the DR-REP message generator transmits
the DR-REP message to node Nq by using downward routing
tables. Route entry is added into downward tables while the
DR-REQ message is processed. In Non-Storing mode, the DR-
REP message is forwarded up to the DODAG root, which then
transmits the DR-REP message to node Nq by using source
routing.

(5)))()(()(pqi NRNRspNR +=

Figure 4. The DR-REQ Processing in Storing Mode

Figure 5. The DR-REP Processing in Storing Mode

A. DODAG Local Repair in Storing Mode

In Storing mode, if the route from node Nq to its parent Nqp
is broken, Nq removes Nqp from its parent set such that P(Nq) =
{Nk | NkÎP(Nq) / {Nqp}}. If the updated parent set P(Nq) is
empty, Nq transmits a DR-REQ message to discover new
parents. If the updated parent set P(Nq) is not empty, Nq
checks if Nqp is its preferred parent p(Nq). If yes, Nq selects a
new preferred parent p(Nq) as shown in equation (3) and
updates c(Nq) as shown in equation (4). If Nqp is also in Nq’s
DAO parent set, Nq schedules a No-Path DAO message
transmission.

Whether or not Nqp is Nq’s preferred parent, Nq can
transmit a DR-REQ message to discover additional parents if
|P(Nq)| < Tp. To construct a DR-REQ message in Storing mode,
Nq increases DR-SN(Nq) by 1 and uses Nq, R(Nq), VN(Nq),
and DR-SN(Nq) to fill the fields in the DR-REQ message.

A.1 DR-REQ Message Processing

Figure 4 shows the procedure of processing the DR-REQ
message when router Ni receives a DR-REQ message from Nj
in which VN(Nq), Nq, R(Nq) and DR-SN(Nq) are the
parameters carried in the DR-REQ message, and VN(Ni), R
(Ni), and P(Ni) are state parameters of Ni.

Router Ni first performs the filtering process. The DR-
REQ message is discarded if this DR-REQ message is
received already by checking Nq and DR-SN(Nq) or if the
VN(Nq) is not equal to VN(Ni) or if the DR-REQ message is
transmitted by Ni’s parent or if the DR-REQ message is
generated by Ni’s parent or by Ni itself.

If Ni is the DODAG root, Ni accepts the DR-REQ message,
generates a DR-REP message by copying Nq, R(Nq), DR-
SN(Nq) from the DR-REQ message, and setting R(Np) =
R(Root), c = 0, VN(Np) = VN(Root), and transmits the DR-
REP message to node Nq via next hop node Nj.

If Ni is not the DODAG root, the processing of DR-REQ
message is as follows. If Ni’s parent set P(Ni) is empty, Ni
discards the DR-REQ message and transmits a its own DR-
REQ message. If Ni’s parent set P(Ni) is not empty and R(Ni)
< R(Nq), Ni accepts the DR-REQ message and generates a
DR-REP message by copying Nq, R(Nq), DR-SN(Nq) from the
DR-REQ message, and setting R(Np) = R(Ni), c = c(Ni),
VN(Np) = VN(Ni). Ni transmits the DR-REP message to node
Nq via next hop node Nj. If Ni’s parent set P(Ni) is not empty
and R(Ni) ≥ R(Nq), Ni adds a downward routing entry to node

Nq into its downward routing table, and forwards the DR-REQ
message to its preferred parent p(Ni).

A.2 DR-REP Message Processing

Figure 5 shows the procedure of processing the DR-REP

message when node Ni receives a DR-REP message from
router Nj in which VN(Np), Nq, R(Np), DR-SN(Nq) and R(Nq)
are the parameters carried in the DR-REP message, and
VN(Ni), R(Ni), P(Ni), p(Ni), c(Ni), and Tp are state parameters
of node Ni.

If VN(Np) is not equal to VN(Ni) or this DR-REP message
is received already, node Ni discards the DR-REP message.
Otherwise, Ni processes the DR-REP message further.

If Ni is the DR-REQ message generator and Nj is not in
Ni’s parent set P(Ni), Ni adds Nj into P(Ni) if |P(Ni)| < Tp and
updates p(Ni) according to equation (3) and c(Ni) according to
equation (4). Ni then schedules a DAO message transmission
if Nj is also added into its DAO set.

If Ni is not the DR-REQ message generator, the processing
of the DR-REP message is as follows. If Ni is not on the
downward route, Ni discards the DR-REP message. Otherwise,
if R(Ni) ≥ R(Nq), Ni decreases its rank R(Ni) as

and updates its parent set P(Ni) as

If the preferred parent p(Ni) is removed due to its rank
decrease, Ni selects a new p(Ni) according to equation (3) and
updates c(Ni) according to equation (4). Ni then updates the
DR-REP message by setting R(Np) = R(Ni) and c = c(Ni),
forwards the DR-REP message to next hop node obtained
from downward routing table. Ni schedules a No-Path DAO
message transmission if any DAO parent is removed.

If R(Ni) < R(Nq), Ni updates the DR-REP message by
setting R(Np) = R(Ni) and c = c(Ni), forwards it to next hop
node obtained from downward routing table. In Storing mode,
R(Ni) < R(Nq) occurs if Ni is on multiple DODAG repair
routes. When Ni receives a DR-REP message, it may decrease
its rank. Therefore, subsequent DR-REP messages may carry a

(6))}(),()(|{)(ikikki NPNNRNRNNP Î<=

Figure 6. The DR-REQ Processing in Non-Storing Mode

Figure 7. The DE-REP Processing in Non-Storing Mode

rank R(Nq) greater than or equal to R(Ni). If Ni is only on a
single DODAG repair route, R(Ni) ≥ R(Nq) must be true based
on the DR-REQ message processing procedure.

By the definition of rank split operation, it is easy to show
that rank R(Np) in the DR-REP message is the maximum rank
of routers on the route from the DR-REP message generator to
the DR-REP message transmitter. R(Np) is always less than
R(Nq). Therefore, when the DR-REP message reaches the DR-
REQ message generator Nq, rank R(Np) in the DR-REP
message must be less than R(Nq). Therefore, the rank
monotonically increases along a route from the DE-REP
message generator to the DR-REQ message generator. This
guarantees that rank increases monotonically along the route
from the DODAG root to any node.

B. DODAG Local Repair in Non-Storing Mode

The processing of upward route failure from node Nq to its
parent Nqp in Non-Storing mode is mostly similar to that in
Storing mode. The first difference is that after removing a
DAO parent, the node schedules a transmission of DAO
message instead of No-Path DAO message. The second
difference is that NL-REQ field is present in the DR-REQ
message; D and NL-REP fields are present in the DR-REP
message. The third difference is that the DR-REP message is
first forwarded upwards to the DODAG root, which then sends
the DR-REP message downwards to node Nq.

B.1 DR-REQ Message Processing

Figure 6 shows the procedure of processing the DR-REQ

message when Ni receives a DR-REQ message from Nj in
which VN(Nq), Nq, R(Nq), DR-SN(Nq), and NL-REQ are the
parameters in the DR-REQ message and VN(Ni), R(Ni), and
P(Ni) are state parameters of Ni.

The DR-REQ message is discarded if this DR-REQ
message is received already or if VN(Nq) is not equal to
VN(Ni) or if the DR-REQ message is transmitted by Ni’s
parent or if the DR-REQ message is generated by Ni’s parent
or by Ni itself.

If Ni is the DODAG root, Ni accepts the DR-REQ message,
and generates a DR-REP message similarly as in Storing mode.
However, in this case, the DODAG root sets D to DOWN,
NL-REP field in DR-REP message to NL-REQ field in DR-
REQ message, and transmits the DR-REP message to node Nq
via the route provided by NL-REP field.

If Ni is not the DODAG root, the processing of the DR-
REQ message is as follows.

If Ni’s parent set P(Ni) is empty, Ni discards the received
DR-REQ message and transmits its own DR-REQ message. If
Ni’s parent set P(Ni) is not empty and R(Ni) < R(Nq), Ni
accepts the DR-REQ message, and generates a DR-REP
message similar as the DODAG root does. However, Ni sets D
= UP, NL-REP = NL-REQ U {Ni}, and forwards the DR-REP

message to its preferred parent p(Ni). If Ni’s parent set P(Ni)
is not empty and R(Ni) ≥ R(Nq), Ni updates the DR-REQ
message by inserting Ni in NL-REQ such that NL-REQ = NL-

REQ U {Ni}, and forwards the DR-REQ message to its

preferred parent p(Ni).

B.2 DR-REP Message Processing

Figure 7 shows that Ni receives a DR-REP message from

Nj in which VN(Np), Nq, R(Np), DR-SN(Nq), D, R(Nq) and
NL-REP are the parameters in the DR-REP message, VN(Ni),
R(Ni), P(Ni), p(Ni), c(Ni), and Tp are state parameters of Ni.

If VN(Np) is not equal to VN(Ni) or this DR-REP message
is received already, Ni discards the DR-REP message.

If D = UP, the DR-REP message is transmitted upwards. If
Ni is the DODAG root, Ni updates the DR-REP message by
changing D = DOWN, R(Np) = R(Root), c = 0, and transmits
DR-REP message down to node Nq via the route provided by
NL-REP field. If Ni is not the DODAG root and its parent set
P(Ni) is not empty, Ni updates DR-REP message such that NL-
REP = NL-REP U {Ni}, and forwards the DR-REP message to

its preferred parent p(Ni). If Ni is not the DODAG root and its
parent set P(Ni) is empty, Ni discards the received DR-REP
message.

If D = DOWN, the DR-REP message is transmitted
downwards. If Ni is DR-REQ message generator, Nj is not in
its parent set P(Ni) and |P(Ni)| < Tp, Ni adds Nj into P(Ni) and
updates p(Ni) according to equation (3) and c(Ni) according to
equation (4). Ni then schedules a DAO message transmission
if Nj is also added into its DAO parent set. If Ni is not the DR-
REQ message generator and is not on the downward route, Ni
discards the DR-REP message. Otherwise, if R(Ni) < R(Nq),
Ni updates the DR-REP message by setting R(Np) = R(Ni), c =
c(Ni), and forwards the DR-REP message to node Nq via the

Figure 8. Example of the DODAG Local Repair

route provided by NL-REP field. If R(Ni) ≥ R(Nq), Ni
decreases its rank R(Ni) to sp(R(Nq), R(Np)) and updates its
parent set P(Ni), the preferred parent p(Ni) and cost c(Ni)
according to equations (5), (6), (3) and (4) respectively. Ni
then updates the DR-REP message by setting R(Np) = R(Ni), c
= c(Ni), and forwards the DR-REP message to node Nq via the
route provided by NL-REP field. Furthermore, Ni schedules a
DAO message transmission if any DAO parent is removed due
to its rank decrease.

By definition of the rank split operation, it can also been
shown that rank R(Np) in the downward DR-REP message is
the maximum rank of routers on the route from the root to DR-
REP transmitter. R(Np) is always less than R(Nq). Therefore,
when the DR-REP message reaches the DR-REQ message
generator, the rank R(Np) in the DR-REP message must be
less than R(Nq), which is the rank of the DR-REQ message
generator. Hence, the rank monotonically increases from the
root to the DR-REQ message generator. This guarantees that
rank increases monotonically along a route from the root to
any node.

Figure 8 illustrates how the broken route in Figure 1 is
handled by the proposed DODAG local repair method. The
fractions are the ranks of nodes and the root, respectively.
After the route to the root is broken, N1 removes the root from
its parent set P(N1) and transmits a DR-REQ message with Nq
= N1 and R(Nq) = R(N1) = 1/2. N2 discards the DR-REQ
message because this DR-REQ message is transmitted by its
parent N1. N3 forwards the DR-REQ message to N2 because
R(Nq) in the DR-REQ message is smaller than its rank R(N3)
= 3/4. However, the DR-REQ message forwarded by N3 is
discarded by N2 because the DR-REQ message is generated by
N2’s parent N1. N5 forwards the DR-REQ message to N4
because R(Nq) is smaller than R(N5) = 2/3. N4 forwards the
DR-REQ message to the root because the rank R(Nq) equals
its rank R(N4) = 1/2. The root generates a DR-REP message
with R(Np) = R(Root) = 0/1 and transmits the DE-REP
message back to N1.

Upon receiving this DR-REP message, N4 decreases its
rank R(N4) to 1/3 because its old R(N4) = 1/2, which equals to
R(Nq). N4 then sets R(Np) to its new rank R(N4) = 1/3 and
forwards the DR-REP message to N5. Upon receiving the DR-
REP message, N5 decreases its rank to 2/5 because its old rank
R(R5) = 2/3, which is greater than R(Nq) = 1/2. N5 then sets
R(Np) to its new rank R(N5) = 2/5 and forwards DR-REP
message to N1. Upon receiving the DR-REP message from N5,
N1 selects N5 as its parent and transmits DIO message without

changing its rank. The DODAG local repair process initiated
by N1 is completed.

V. SIMULATIONS

The performance of AODV and DSR has been evaluated
considerably. The NS2 simulator is used to simulate AODV
and DSR in [10 - 17. Unfortunately, most of simulation results
are obtained with a small number of nodes, less or equal to 50
nodes [11-17]. Another common fact is that all simulations are
performed using IEEE 802.11 wireless network instead of
IEEE 802.15.4 wireless network, which is designed for LLNs.
RPL has been implemented and simulated in [5]. However, the
simulation was also done over IEEE 802.11 wireless networks.

We used NS2 simulator with IEEE 802.15.4 to simulate
the performance of proposed routing protocol in large scale
LLNs. Nodes are randomly displaced in a rectangle with the
DODAG root in the middle of rectangle. In the simulation,
transmission range is 30 meters and data rate is 100kbps. The
CBR traffic is employed with 50 bytes of payload.
TwoRayGround channel model and Shadowing channel model
[8] are used. Performance metrics are data packet delivery rate
(PDR), data average end-to-end delay (AED) and routing
overhead (ROH) per data packet.

 TABLE 2. TwoRayGround Channel Model with 1000 Nodes

Tables 2 shows simulation results using TwoRayGround
channel model, 1000 nodes and 24 hours simulation time.
1000 nodes are randomly deployed in a 320m by 320m
rectangle. LRPL achieves 100% of packet delivery rate.
AODV only achieves 56.78% of packet delivery rate for 5-
minute CBR Interval and drops 82.6% of data packet for 2-
minute CBR interval. For 5-minute CBR interval, LRPL is 6.6
times faster than AODV. For 2-minute CBR interval, LRPL is
15.4 times faster than AODV. For 5-minute CBR interval,
LRPL’s routing overhead is 27 times lower than AODV
outing overhead. For 2-minute CBR interval, LRPL’s routing
overhead is 49 times lower than AODV routing overhead.

 TABLE 3. Shadowing Channel Model with 500 Nodes

Table 3 shows the performance comparison with
Shadowing channel model and 500 nodes, which are randomly
deployed in a 250m by 200m rectangle. The shadowing
deviation is 4dB, CBR interval is 30 minutes and simulation
time is 24 hours. Table 3 illustrates performance variation of
routing protocols as path loss exponent (PLE) changes. LRPL
almost achieves 100% of packet delivery rate. However,
AODV drops more than 63% of packets. LRPL is about 10

times faster than AODV. The routing overhead of LRPL is at
least 380 times lower than that of AODV.

TABLE 4. Shadowing Channel Model with 500 Nodes

Table 4 illustrates a more complete performance of LRPL
with Shadowing channel model and 500 nodes. It can be seen
that the overall performance of LRPL is excellent. LRPL
maintains its performance as path loss exponent increases
from 2.0 to 4.0, especially the packer delivery rate, which is
almost 100%. The end-to-end packet delay and the routing
overhead tend to increase; the change however is very small.

 TABLE 5. Shadowing Channel Model with 1000 Nodes

Tables 5 shows simulation results of LRPL using
Shadowing channel model and 1000 nodes. It can also be seen
that the overall performance of LRPL is also excellent. LRPL
achieves also 100% of packet delivery rate for all cases. As
path loss exponent increases from 2.0 to 4.0, the end-to-end
packet delay and the routing overhead tend to increase.

Tables 4 and 5 show that packet delivery rate of LRPL is
almost same for 500 nodes and 1000 nodes. However, the end-
to-end delay increases for about 55% and the routing overhead
however increases about 150%. The routing overhead increase
is mostly contributed by the DODAG local repair packets. It
indicates that as the number of nodes increases,
communication interference also increases. Therefore, the
communication link breaks more often.

To compare the proposed LRPL with RPL, we refer to the
results in [5], which simulated RPL using 802.11 wireless
network. The performance of RPL was evaluated with smaller
shadowing deviation of 1dB and 2dB. For shadowing
deviation of 2dB, RPL only achieves a 97.9% of packet
delivery rate. On the other hand, LRPL achieves more than
99% of packet delivery rate with shadowing deviation of 4dB.
It can be seen that even with lower data rate of 802.15.4 and
larger shadowing fading effect, LRPL performs better than
RPL.

VI. CONCLUSION

In this paper, we present a loop-free routing protocol in
LLNs based on IETF RPL framework. The proposed routing
protocol defines rank as proper fraction to guarantee no
routing loops can be created. A DODAG local repair method
is also proposed for fast route repair. The proposed routing
protocol is simulated by using NS2 simulator with a large
number of nodes over IEEE 802.15.4 low power and lossy
wireless networks. Simulation results show that the proposed

routing protocol performs much better than conventional
routing protocols. It achieves almost 100% of packet delivery
rate with much shorter end-to-end delay and lower routing
overhead. Therefore, it is a desired routing protocol for LLNs,
especially when network scale is large and message generation
rate is high. We are planning to implement RPL in 802.15.4
wireless network. The results will be reported in the future.

REFERENCES

[1] C.E. Perkins, E.M. Royer, and S.R. Das, “Ad-hoc On-demand Distance
Vector (AODV) routing”, RFC 3561, July 2003

[2] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source Routing
protocol (DSR) for mobile Ad Hoc networks for IPv4”, RFC 4728,
February 2007

[3] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Stuick, JP. Vasseur, and R. Alexander “RPL: IPv6 Routing Protocol
for Low power and Lossy Networks”, RFC 6550, March 2012

[4] N. Tsiftes, J. Eriksson, and A. Dunkels, “Poster Abstract: Low-Power
Wireless IPv6 Routing with ContikiRPL”, The 9th ACM/IEEE
International Conference on Information Processing in Sensor Networks,
Stockholm, Sweden, April 2010

[5] D. Wang, Z. Tao, J. Zhang, and A. Abouzeid, “RPL Based Routing for
Advanced Metering Infrastructure in Smart Grid”, IEEE International
Workshop on Smart Grid Communications, May 2010

[6] T. Clausen and U. Herberg, “Some Considerations on Routing in
Particular and Lossy Environment”, Proceedings of the 1st IAB
Interconnecting Smart Objects with the Internet Workshop, Prague,
Czech Republic, March 2011

[7] T. Clausen, J. Yi, and U. Herberg, “Experieces with RPL: IPv6 Routing
Protocol for Low power and Lossy Networks”, the 83rd IETF Plenary
Meeting, Paris, France, March 2012

[8] W. Xie, M. Goyal, H. Mosseini, J. Martocci, Y. Bashir, E. Baccelli, and
A. Durresi, “Routing Loops in DAG-based Low Power and Lossy
Networks”, Proc. IEEE AINA 2010, 2010

[9] K. Fall and K. Varadhan, “The Network Simulator Manual”,
http://www.isi.edu/nsnam/ns/ns-documentation.html, May 2010

[10] A. Goel and A. Sharma, “Performance Analysis of Mobile Ad-hoc
Network Using AODV Protocl”, International Journal of Computer
Science and Security (IJCSS), Volume (3): Issue (5), 2009

[11] D. Singh, P. Trivedi, and J.D. Lal, “Performance Evaluation of DSR and
AODV Networking Protocol With Varying Pause Time”, Proceedings of
SPIT-IEEE Colloquium and International Conference, Mumbai, India,
Vol. 3, 190, 2007

[12] A.H.A. Rahman and Z.A. Zukarnain, “Performance Comparison of
AODV, DSDV and I-DSDV Routing Protocols in Mobile Ad Hoc
Networks”, European Journal of Scientific Research ISSN 1450-216X
Vol.31 No.4 (2009), pp.566-576

[13] N.P. Bobade and N.N. Mhala, “Performance Evaluation of Ad Hoc On
Demand Distance Vector in MANETs with varying Network Size using
NS-2 Simulation”, International Journal on Computer Science and
Engineering, Vol. 02, No. 08, 2010, 2731-2735

[14] A.K. Gupta, H. Sadawarti, and A.K. Verma, “Performance analysis of
AODV, DSR & TORA Routing Protocols”, International Journal of
Engineering and Technology, Vol.2, No.2, April 2010, ISSN: 1793-8236

[15] S. Shah, A. Khandre, M. Shirole, and G. Bhole, “Performance
Evaluation of Ad Hoc Routing Protocols Using NS2 Simulation”,
Mobile and Pervasive Computing (CoMPC–2008)

[16] C.E. Perkins and P. Bhagwat, “Highly Dynamic Destination Sequenced
Distance Vector Routing (DSDV) for Mobile Computers”, In
Proceedings of the SIGCOMM 94, August 1994

[17] S.S. Tyagi and R.K. Chauhan, “Performance Analysis of Proactive and
Reactive Routing Protocols for Ad hoc Networks”, International Journal
of Computer Applications, Vol. 1, No. 4, 2010

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2012-060.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

