MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Fast and Robust Load Flow Method for
Distribution Systems with Distributed
Generations

Sun, H.; Nikovski, D.; Ohno, T.; Takano, T.; Kojima, Y.

TR2011-070 September 2011

Abstract

This paper proposes a fast and robust load flow method for balanced power distribution systems
with distributed generation sources. The method formulates generation sources. The method for-
mulates the power flow equations in PQ decoupled form with polar coordinates. Second-order
terms are included in the active power mismatch iteration, and resistances are fully modeled
without any simplifications. The impacts of zero-impedance branches are explicitly modeled
through reconfiguring of the adjacent branches with impedances. Typical distribution generation
models and distribution load models are included. A hybrid direct and indirect solution tech-
nique is used to achieve efficiency and robustness of the algorithm. Active power correction is
solved by means of a sparse LU decomposition algorithm with partial pivoting, and the reactive
power correction is solved by means of restarted Generalized Minimal Residual algorithm with
incomplete LU pre-conditioner. The numerical examples on a sample distribution system with
widespread Photovoltaic installations are given to demonstrate the effectiveness of the proposed
method.
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Abstract—This paper proposes a fast and robust load
flow method for balanced power distribution systems with
distributed generation sources. The method formulates
the power flow equations in PQ decoupled form with
polar coordinates. Second-order terms are included in the
active power mismatch iteration, and resistances are fully
modeled without any simplifications. The impacts of
zero-impedance branches are explicitly modeled through
reconfiguring of the adjacent branches with impedances.
Typical distribution generation models and distribution
load models are included. A hybrid direct and indirect
solution technique is used to achieve efficiency and
robustness of the algorithm. Active power correction is
solved by means of a sparse LU decomposition algorithm
with partial pivoting, and the reactive power correction is
solved by means of restarted Generalized Minimal
Residual algorithm with incomplete LU pre-conditioner.
The numerical examples on a sample distribution system
with widespread Photovoltaic installations are given to
demonstrate the effectiveness of the proposed method.
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I. Introduction

Load flow calculation is one of the most common
computational procedures used in distribution system
analysis. Planning, operation and control of distribution
systems require such calculations in order to analyze the
steady-state performance of the systems under various
operating conditions and equipment configurations. With the
increasing penetration of various distribution generations and
implementation of advanced control techniques, the analysis
of distribution systems plays even more critical role than
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before, and the complexity of analysis has significantly
increased as well.

Various methods for solving the power flow problem are
known [1] ~ [17]. Those methods differ in either the form of
the equation describing the system, or the numerical
techniques used. The bus admittance matrix based methods
are widely used. Typical methods include the Gauss-Seidel
method [1], the Newton-Raphson method [2], and the Fast
Decoupled method [6]. Those methods formulate power flow
problems as linear systems, and solve the problem by either
direct or iterative techniques. The method proposed in this
paper also belongs to this category.

Based on the characteristics of distribution systems with
distribution generation, this paper proposes a new efficient
and robust load flow method for balanced distribution
systems. The features of the new method are summarized as
follows:

* Accurate modeling of the zero impedance branches by
merging the zero-impedance branches with adjacent
impedance branches to avoid convergence problems resulting
from modeling those as small impedance branches.

» Formulating the decoupled PQ equations in polar form.
The resistance impacts are modeled in both active and reactive
power equations, and the necessary trigonometric operations
have been avoided by using an appropriate polynomial
approximation. It includes second terms of phase angle in
active power correction equations to reduce the required
iterations for phase angle updating.

» Using direct and iterative solution techniques to handle
active and reactive power corrections respectively. This
hybrid solution technique fully takes advantage of the
different characteristics of active and reactive power updating
to speed up the load flow solution.

» Seamless integration of various types of distribution
generation sources and distribution load models with the
solution process.

II. Proposed Method

A. Modeling of zero-impedance branches

Many branches in a power distribution system have very
low impedance, such as voltage regulators, switches, ideal
transformers, ideal phase shifters, elbows, and jumpers.

In practice, these low impedances are ignored and set to
zero in conventional models. The consequence is that some



entries in the resultant bus admittance matrix are infinite, and
thus the admittance matrix based approaches are inapplicable.
In order to use bus admittance matrix based approaches,
conventional methods have arbitrarily assigned small
non-zero impedances to those branches. However, assigning
such small impedances makes the analysis ill-conditioned, and
power flows are difficult to converge. This paper uses a
different approach to handle the zero-impedance branches in
power flow analysis.
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Fig.1. Generalized zero-impedance branch model.

Fig. 1 shows a generalized model for representing
zero-impedance branches in a distribution system. A branch
has a master bus m and a slave bus s. The buses are connected
by an ideal transformer. The transformer has a ratio 1:q,,,

where a,, is a complex number.

The complex transformer ratio becomes 1, when the branch
is a switch or small conductor, a real number when it is an
ideal voltage regulator or transformer, and a complex number
with magnitude 1.0 when it is an ideal phase shifter.

The current flowing to the slave bus through the branch is
equal to the current flowing from the master bus divided by
the conjugate of the complex ratio. The voltage at the slave
bus is equal to the voltage at the master bus multiplied by the
complex ratio.

When constructing the bus admittance matrix, only
non-slave buses are considered. Zero-impedance branches are
not used. The impacts of zero impedance branches are
represented through the associated master buses, and the
branches adjacent to the slave buses as shown in Fig. 2.

Fig. 2 shows an example construction of an equivalent
distribution system model with non-zero impedances. The
construction transforms a model of distribution system with
zero impedance branches to the equivalent distribution system
model with non-zero impedances.

In Fig. 2, a zero-impedance branch is connected to three
branches (broken lines) by the slave bus and to two branches
(double lines) by the master bus. Taking one adjacent branch
between slave bus s and bus k£ as example, the branch
admittance matrix is

s k

s Y Y
k Yks Ykk

where, Y, and Y}, are the self admittances of the branch at the
slave bus s and the bus &, and Y and Y, are the mutual
admittances of the branch between the bus s to bus &, and bus &
to bus s, respectively. The master bus m provides an injected
complex current /, , an injected complex power S , and a

m > m>

shunt compensator with admittance ¥*" . The slave bus s

provides an injected complex current /_, an injected complex

power S, and a shunt compensator with admittance ¥ .
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Fig.2. Equivalent model for distribution system with zero
impedance branches.

In the equivalent model, the zero-impedance branch and the
slave bus s are removed. There are no changes for the
branches connected to the master bus m. The branches
connected to the slave bus s are reconnected to bus m, and the
branch admittance matrices are modified accordingly.

The branch between buses s and £ in the system is replaced
with a new branch between bus m and bus £ in the equivalent
system and the branch admittance matrix is
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where, a, is the conjugate of zero-impedance branch ratio.

The self admittance at bus m is determined from the product of
self admittance at bus s in the model and the square of the
zero-impedance branch ratio. The mutual admittance for bus
m to k is the product of the conjugate of the zero-impedance
branch ratio and mutual admittance for bus s to & in the
original system. The mutual admittance for bus & to bus m is
the product of the zero-impedance branch ratio and mutual
admittance for bus & to bus s in the original model.

The current at the slave bus s is multiplied by the conjugate
of the zero-impedance branch ratio to add to the master bus m,
and the equivalent current at bus m is:

I+ a.l,
seM
where M is the set of buses that have connected with bus m
through zero-impedance branches.

The powers at bus s are directly added to bus m, and the

resulting equivalent complex power at bus m is:
S+ 28,

seM
The shunt compensation admittance at bus s is multiplied
with the square of the zero-impedance branch ratio to add to
bus m, and the equivalent shunt compensation admittance at



bus m is:
sh * sh
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B. Modeling of distribution generation sources and loads

The generation source for the power distribution system is
usually a power transmission system, and corresponding
equivalent source models are expressed as a swing bus, or a
PV bus in the power flow analysis.

In addition to the equivalent sources, the power distribution
system can also have distributed power generators. Depending
on the types of energy sources and energy converters, the
distribution power generators are specified by a constant
power factor model, constant voltage model, or variable
reactive power model [18].

The buses connected to the constant power factor
generators or the variable reactive power generators are
treated as PQ buses. For the constant power factor generator,
the specified values are the active power output and power
factor. The reactive power output is determined from the
active power and the power factor. For the variable reactive
power generator, the active power output is specified, and the
reactive power output is determined by applying a
predetermined polynomial function to the active power
output.

The buses connected to constant voltage generators are
treated as PV buses, and the specified values are the outputs of
the active powers and the magnitudes of bus voltages. These
buses are also selected as master buses when the equivalent
system model is constructed.

The distribution load models include a constant impedance
load, a constant power load, and a constant current load. The
constant impedance load is directly treated as connected bus
shunt impedance, which is embedded into the bus admittance
matrix.

The constant power load is modeled as bus injected power.
The constant current load is converted to equivalent bus
injected powers to be modeled. The equivalent injected
powers are based on estimated bus voltages. The powers are
recalculated when the current bus voltages become available
during the iterations of the solution.

By converting to PV or PQ buses or shunt compensations,
the distribution source and load models are seamlessly
integrated into the solution process.

C. Decoupled Power Flow Equations with Full Impedances
and Second Order Terms

The power flow equations for all non-slave buses are
B =V,3V,[G,cos(0,-0,)+B,sin(@,-0,)] (1)
~". . i .
0, =V ZV,[G, sin(0,~0,) - B, cos(@,~0)] ()
j
where, P and Q, are the net injected active power and

reactive power at bus i, V; and 6, are the voltage magnitude

and phase angle at bus i, and G, and B; are the real and

imaginary part of the bus admittance matrix element
associated with bus 7 and bus ;.

Similarly to the Fast Decoupled method, active power is
expressed as a function of bus phase angles, and reactive
power is a function of bus voltage magnitudes. By applying
the Taylor expansion to Eqns. (1) and (2), and retaining up to
second order terms, one obtains
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where AP and AQ are vectors of bus active and reactive
power changes, A@ and AV are the vectors of bus phase
angle and voltage magnitude changes, J, and H, are the
Jacobian and Hessian matrices of bus active powers with
respect to bus phase angles, and J), is the Jacobian matrix of
bus reactive powers with respect to bus voltage magnitudes.
The element of the Jacobian J, that is associated with the
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active power at bus 7 and phase angle at bus j is 1 oF .
v, 20,

The element of the Hessian H, that is associated with the

active power at bus 7 and the phase angles at bus j and bus £ is

1 o°P

v, 00,00,

Similarly, the element of Jacobian.J, that is associated

with the reactive power at bus 7/ and the voltage magnitude at

bus is i@
oV

i J
During the formulation of the Jacobian and Hessian
matrices, the trigonometric functions are replaced with the
Taylor series up to 2-orders respectively to simplify the
formulation and speed up the calculation:
sin(x) = x @)

cos(x) =1-x7/2 (6)

D. Hybrid Direct and Indirect Procedures

The power flow equations are usually solved either by
means of a direct solution technique [19] or an iterative
solution technique [20]. Considering the -characteristic
difference between active power and reactive power
problems, the proposed method uses a hybrid procedure to
solve the power flow equations described in Eqns. (3) and (4),
in which the direct solution technique is used to solve the
active power mismatch equations, and the iterative procedure
is used to solve the reactive power mismatch equations.

For the active power mismatch problem, the following
equation is used:

(k)

J,(V?,6")A6 = ap
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The Jacobian matrix J,(V”,0”) and the Hessian matrix
H,(V'”,0) are determined by using the initial bus voltage

magnitude V¥ and phase angle 8, which remain constant
during the iterations. The first item in the right hand side is the
bus active power mismatch divided by the corresponding bus
voltage magnitude that was determined by means of the bus
voltage magnitude and phase angle obtained during the
previous iteration k. The second item is the additional
mismatch added by the second order of phase angle changes,
also determined by means of the phase angles obtained at
previous iteration. This linear equation is solved by means of a
sparse LU decomposition with partial pivoting. The bus phase
angle vector @ is updated when the phase angle correction
vector A@ is determined.

For the reactive power mismatch problem, the following
equation is used

J, (7 ,0)AY = )

The Jacobian matrix J, (V”,0”) is determined from

initial bus voltage magnitudes and phase angles, which remain
constant during the iterations. The right hand side is the bus
reactive power mismatch divided by the corresponding bus
voltage magnitude that was determined from the bus voltage
magnitude and phase angle obtained during the previous
iteration k. This linear equation is solved by means of the
Restarted Generalized Minimal Residual method with
incomplete LU pre-conditioner. The diagonal elements of the
Jacobian matrix are taken to be the preconditioned matrix.
The bus voltage magnitude vector V' is updated when the
voltage magnitude correction vector AV is determined.

The ideal values are used to set the initial values for bus
voltage magnitudes and phase angles. It is assumed that the
impedances of all branches are zero.

The initial voltage magnitude of a bus is set as the result of
multiplying the swing bus voltage magnitude by all voltage
increasing ratios resulting from the transformers along the
shortest path from the swing bus to the study bus.

The bus initial phase angle is set as the swing bus phase
angle plus all phase angle changes resulting from the phase
shifters along the shortest path from the swing bus to the bus.

ITII. Numerical Examples

The developed algorithm has been tested on several sample
systems, and satisfactory results have been obtained. The
testing results on a sample 6.6-kV distribution system and
computation performance compared with other existing
methods are provided here.

As shown in the Fig. 3, the test system has 6 feeders and 122
nodes. The first feeder of the system is used for power
generation only, and each node along the feeder has a
photovoltaic unit installed at it. The other 5 feeders are used
for both power generation and for serving power demand from

customers, with each node along the feeder also having a
photovoltaic unit and a service load transformer installed. The
load demand at each node contains 30% constant power load,
30% constant current load, and 30% impedance load. The
system has 12 zero-impedance branches, including 6 closed
switches, and 6 voltage regulators.

=ip
= XFM

Fort| sorz| rona| romsl eoms| roms|

NJ\ o =

ol ol F
b V2L VAL wrel ws

i

Fig. 3. The sample 6.6 kV distribution system.
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Four different cases are simulated as shown in Table 1.
Case I and II simulate normal power supply scenarios. In those
cases, the main grid satisfies the major portion of total system
load demand, and the remaining portion is satisfied by local
photovoltaic units. Case III and IV simulate back-feeding
scenarios. Besides satisfying the total load demands of local
customers, the system still has power surplus that can be fed
back to the main grid. The photovoltaic units only generate
active power in case | and III, and both active power and
reactive power in case Il and I'V.

Table 1: Test Scenarios

Load Demands PV Generations

Scenarios Case MVA Power Power
Factor Factor
Normal Power 1 11.486 0.95 3 1.0
Supply I 11.486 0.95 3 0.95
Back-feed to I 11.486 0.95 30 1.0
Main Grid v 11.486 0.95 30 0.95

Five different algorithms have been implemented to
calculate the load flows of the sample micro-grid system,
including the method proposed in this paper, the Gauss-Seidel
method, the Newton-Raphson method, and the BX and XB
versions of the fast decoupled method. The computational



performance is shown in Table 2-5. The allowed maximum

power mismatch is set to 107 per unit, and the maximum
iteration number is set to 2000.

Table 2: Computational Performance for Case |

. Computation .
Algorithm Time(Seconds) Iterations Convergence
Proposed Method 0.029 12 Converged
Gauss-Seidel Method 5.668 1387 Converged
Newton-Raphson
Method 0.191 7 Converged
Fast Decoupled Not
Method, XB Version 0.741 2000 Converged
Fast Decoupled Not
Method, BX Version 0812 2000 Converged

Table 3: Computational Performance for Case 11

Algorithm giorrrﬁerzgteit(l)?::is) Iterations Convergence

Proposed Method 0.032 13 Converged

Gauss-Seidel Method 5.191 1393 Converged

Newton-Raphson

Method 0.152 7 Converged

Fast Decoupled Not
0.631 2000

Method, XB Version Converged

Fast Decoupled Not
0.633 2000

Method, BX Version Converged

Table 4: Computational Performance for Case I11

. Computation .
Algorithm Time (Seconds) Iterations Convergence
Proposed Method 0.028 15 Converged
Gauss-Seidel Method 7.887 1917 Converged
Newton-Raphson
Method 0.189 5 Converged
Fast Decoupled Not
Method, XB Version 0818 2000 Converged
Fast Decoupled Not
Method, BX Version 0.792 2000 Converged

Table 5: Computational Performance for Case IV

Computation

Algorithm Time (Seconds) Iterations Convergence

Proposed Method 0.038 19 Converged

Gauss-Seidel Method 6.529 1693 Converged

Newton-Raphson

Method 0.149 5 Converged

Fast Decoupled Not
0.740 2000

Method, XB Version Converged

Fast Decoupled Not
0.711 2000

Method, BX Version Converged

Taking Case I as an example, it took 29 ms and 12 iterations
for the proposed algorithm to find the final solution with the
required precision. In comparison, it took 5668 ms and 1387
iterations for the Gauss-Seidel algorithm, and 191 ms and 7
iterations for the Newton-Raphson algorithm to find the
solution with the same precision. The two fast decoupled
algorithms, either the BX version or the XB version, failed to

converge to a solution within the given maximum number of
iterations. Similar results can be found in the other three tables
for the other three cases.

From those test results, we can see that the proposed
algorithm is much more efficient than the Gauss-Seidel and
Newton-Raphson algorithms, and has much better
convergence than the Fast Decoupled ones.

IV. Conclusion

The paper has proposed a fast and robust method for load
flow analysis of balanced distribution systems with distributed
generations. It models zero-impedance branches accurately,
and avoids solution divergence that is usually caused by zero
or small impedance branches in conventional methods. The
method formulates the power flow equations in PQ decoupled
form with constant Jacobian and Hessian matrices. It uses a
hybrid procedure to solve the power flow equations, in which
the direct method is used to solve the active power equations,
and the indirect method is used to solve the reactive power
equations.

The test results have proven experimentally that the
proposed method is much faster than both the Gauss-Seidel
and Newton-Raphson algorithms, and has better convergence
than the Fast Decoupled algorithms.
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