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Abstract

In this paper, we study the benefits of the availability of a specific form of additional information,
the vertical direction (gravity) and the height of the camera, both of which can be conveniently
measured using inertial sensors and a monocular video sequence for 3D urban modeling. We
show that in the presence of this information, the SfM equations can be rewritten in a bilinear
form. This allows us to derive a fast, robust, and scalable SfM algorithm for large scale ap-
plications. The SfM algorithm developed in this paper is experimentally demonstrated to have
favorable properties compared to the sparse bundle adjustment algorithm. We provide exper-
imental evidence indicating that the proposed algorithm converges in many cases to solutions
with lower error than state-of-art implementations of bundle adjustment. We also demonstrate
that for the case of large reconstruction problems, the proposed algorithm takes lesser time to
reach its solution compared to bundle adjustment. We also present SfM results using our algo-
rithm on the Google Street View research data set.
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Abstract— In this paper, we study the benefits of the availability
of a specific form of additional information - the vertical direction
(gravity) and the height of the camera both of which can be
conveniently measured using inertial sensors, and a monolar
video sequence for 3D urban modeling. We show that in the presice
of this information, the SfM equations can be rewritten in a bilinear
form. This allows us to derive a fast, robust, and scalable $4
algorithm for large scale applications. The SfM algorithm developed
in this paper is experimentally demonstrated to have favorhle
properties compared to the sparse bundle adjustment algothm.
We provide experimental evidence indicating that the propsed
algorithm converges in many cases to solutions with lower eor
than state-of-art implementations of bundle adjustment. W& also
demonstrate that for the case of large reconstruction prot#ms,
the proposed algorithm takes lesser time to reach its soluiin
compared to bundle adjustment. We also present SfM resultssing
our algorithm on the Google StreetView research dataset.

Index Terms— Structure from Motion, Multiple View Geometry,
Computer Vision.

l. INTRODUCTION

Structure from Motion (SfM) refers to the task of recoverihg
3D structure of a scene and the motion of a camera from a vi

Higgins [1] eight-point algorithm. There have been sevdifi¢rent

approaches to the SfM problem that are surveyed in [2]. Tlg

problem has gained interest because of exciting new apiplica
like 3D urban modeling, terrain estimation from UAVs etc.drst
and scalable SfM algorithms would enable automatic bugjdirh
3D models of urban scenes from such image sequences [3].

surements from additional sensors such as inertial senglmisal

positioning systems etc—Fhese—additional-measurementstaa

/ ala o-nroce ho d drirnlhosy
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We consider the problem of SfM estimation in the presence of

specific form of measurements that are frequently availadhel
propose a fast, scalable and robust SfM algorithm.

We assume that-we-have measurements of the gravity vector an

the height in the camera coordinate sysfem along with eveagé.
These quantities can be accurately measured using ingetislors.
Under negligible camera acceleration, an accelerometesunes
the gravity that can be used in a complementary filter [4] @haith

gyro measurements to get good estimates of the gravity wdoto

by a world plane to derive the additional measurements [S]nd)
these measurements, we show that the SfM equations reduee to
bilinear form in its unknowns. This leads to an iterative mmization
algorithm that is experimentally demonstrated to conveiagter
from a wide class of initial solutiors—with-lew-errer-in-therieal

direction-and-height-compenents.

A. Literature survey on SfM

SfM algorithms can be broadly classified into the following
categories: batch techniques, minimal solutions and sa@iframe-
works. A comprehensive survey may be found in [2]. The predos
algorithm falls in the class of batch techniques which jgirsolve
for the views of all the cameras and the structure of all thiatpo
Bundle adjustment (BA) [6] is the representative algorittmrthis
class and it minimizes the cumulative reprojection erroalbpoints
in all the images. This is a non-linear least squares mirgtign
problem that is commonly solved using the Levenberg-Mamdjua
(LM) [7] algorithm. The-lirear system corresponding to thermal
equations for LM is intractable for large reconstructiomlpgems.
To handle large problems, the sparse structure of the Heswdrix
is used for efficiently solving the normal equations resgitin

Sparse Bundle Adjustment (SBA) [8] algorithm. The cgaje

g(jlradient (CG) method [7] is another choice for optimizing th

reprojection error that does not require the solution of @da
?/stem; however suitable pre-conditioners are necessant to
work well [9]. In addition, its benefits have not yet been diga
demonstrated for large scale problems.

In spite of these advances, the current computational ressare
still hard-pressed to handle very large reconstructiomlpras, and

Ghe performance is not satisfactory enough for real-woeglaly-

ment. Therefore, recent research has focused on devel&fivig
algorithms in the presence of additional constraints. IRstaince,
position information about the cameras from Global Positig
Sﬁl/stems (GPS) can help us solve for the parameters [10]. If
inertial measurements from IMUs are available, we can redbe
amdbiguities in the SfM problem [11].

B. Related Work

This paper is related to a class of alternation algorithras sblve
for the structure and motion in an iterative fashion [12B][IThese
approaches solve for the projective depths along with théomo

the absence of these sensors, we can use the homographjeedndand structure matrices and result in a projective recoctstmu The
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MD 20742 USA. (e-mail: rama@cfar.umd.edu).

projective depths are typically initialized to unity andearefined
iteratively. This has been reported to work well only in spkc
settings where the depth of each feature point remains gippately

the same throughout the sequence [2]. This does not covey man
important scenarios such as roadside urban sequences ial aer
videos where the altitude of the camera varies a lot. Ourrithgo
makes use of the bilinear form in the Euclidean frame withsbatk
variables. Hence it does not have any restrictions on itseMsept
that the gravity and height measurements must be available.
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Oliensis and Hartley [14] point out theoretically the pdiah We write the transformation between the WCS and the CCS as
for convergence to trivial solutions for this class of algons.
They show that [12] and [13] are unstable because they cgaver Pl =
to nonsensical results and question their usage (even fawa f
iterations) as initialization techniques for the bundlguatinent . . .
algorithm. In contrast, a solution from our algorithm witbwi \i’x?frﬁsﬂ:\?vocimrixmgﬂg Szr(otgatlo_n ggggt)ha;el:ee?(t)fam_dn
error corresponds to a non-trivial reconstruction that @®dj in (1) () (®) P ) 2w T TP Mg 2w
practice. Buchanan [15] evaluated several alternaticst:Gider and [Tz ", Ty ", =], whereT: " is the height of the cameréz;, y;, 1]
second-order approaches for matrix factorization withliappions 1S the image feature in homogeneous coordinates, which ées b
to SfM, and compared the algorithms based on their conveegen”ormahz}fd fc_)r t_he calibration matrix@;, denc_)tes the coordinates
rate and error function value at the final solution. Their kegult ©f the i point in the WCS. From the additional measurements,
was that for general reconstruction problems, Newtondasscent We have estimates at}”) and7.". Using this information, we can
algorithms performed better than alternation approadiesprovide rewrite (1) as
strong experimental evidence that with the assumed additio <C059t sin 6, O)

P, = Ati

X Tti
Y; yei | + TS 1)

= Rz(f)Rét))\ti
Z;

Ut
Vtq
Wi

information, our alternation approach converge fasten tbther
descent algorithms.

—sinf; cosf; O
0 0 1

+TS), @)

s el T = RO o 11T ()
C. Contributions where[ug;, v, w;) 7(151)%- [, yi, 1] - anng_ is computed from
The contributions of the paper are as follows the reference vectoRz; "’ is the rotation matrix that transforms the
outl pap WS- . ) reference vector from-the CCS te-the WCS. We rearrange (2) to
1) iWe-propose a robust and scalable SfM algorithm-using-ad@btain (3) which relates the coordinates of the featuretgniframe

tiopal-measurements that is bilinear in the Euclidean frame; and-feature to the world coordinates and-the camera positions.
2) We describe simulation results demonstrating that tte pr

posed algorithm leads to solutions with lower error than SBA Uti cosfy —sin@, 0\ |Xi— T
and takesglewer time for convergence. Aii [vri | = [ sin@;  cosO O] |y; =T 3

3) We -deseribg-competitive reconstruction results on theglso Wi

StreetView research dataset.

0 0 1) |z _1®

) ) ) We eliminate the projective depth;; by taking ratios of-the
We arenot proposing our algorithm as a substitute for the alrea%’uantities as shown in (4)

successful BA algorithm. We emphasize that BA using LM auifye

remains the best known algorithm for SfM when the initialusioin ) XrTé:)

is favorable. We seek to provide an alternative to BA and laimi ueifwei| _ (cosfy  —sinb) |z, 10 4)
L SR Vi Wi sinf;  cos6; O

approaches when the initial solution is likely to be bad (sas o le%”

when it is obtained from GPS and IMU measurements with asllie
Based on the results of [15], the proposed algorithm can led usie rearrange (4) by multiplying both sides ¥; —T7) to obtain (5)
along with BA to result in a hybrid algorithm that performsttee

; (t)
. L . Uti/wti )y _ [cos 0 —sin6; X; — Ty
than both of them separately, starting from poor initiaugohs. |:'Uti/wti:| (Z; = T,;”) = <sin 9, cosb, Y, — Ty(t) (5)
Il. PROBLEM FORMULATION Assume that we have feature points that are observedrinframes.

We accumulate (5) for all the feature points in all views amitewv
them as shown in (6). We denote the measurement matrik #se
diagonal matrix of camera heights &s, and the produci; A = B.
The diagonal matrix of heights of feature points from theugid
plane isZ. The motion matrix on the right hand sidei$ and the
shape matrix isS. We can rewrite (6) concisely aéZ — B = M S.
Each column of this matrix equation specifies the relatiotvben
the projections of a single point in all the views. Each pdiraws

We choose a World Coordinate System (WCS) with thexis
along the vertical direction, and th€ andY axes are perpendicular
to this axis. If a ground plane is present in the scene,Zhaxis
becomes the normal vector to the plane, andXrendY axes are on
the plane. The Camera Coordinate System (CCS) is choseriheith
Z axis along the optical camera axis and i@ndY axes along the
usual image axes. The transformation between these twadlicate

systems at any instant can be Written/as = Reay Fe + Tegw. P IS specifies the relation between the projections of all thentgoin

a point whose coordinates are represented in the WC nd . . .
i rt)he CCS byF P Bilyand single view. In (4), the quantities” and 7" refer to thea
. on it :
A known reference vector in an unknown CCS fixes two degreggdy componepts Of_ transiatlon f € W(?S' Int(6), the varlables
: : i = _costy T + sinf 7 andtl?) = —sing, 7 — cost, TV

of freedom of the rotation matri®.2,,. The unknown component If n tiw ity Sy h |t1 z % ¢ Zﬂsl
is the rotation of the CCS about an axis parallel to the vedtbe refer to the same quantities in CCs. T IS change of vanaisies
full rotation matrix can be shown to be split uniquely Bs,, — done to enable a factorization into the motion and shapeicratas
Ry Ry, whereR,, is the rotation along the reference vector, angd  SHOWR: Our unknowns are the matrided’, 5, 7} and (6) is bilinear.
is along an axis perpendicular to this vector. We are now eorer Ve Solve for the unknown parametei¥/, S, Z) by minimizing the
with the estimation of the rotation along the reference we(k)), Ffrobemuhs norm ]?f the difference between the matrices oh sie
and the translations along a plane perpendicular to thisovde © (6). The cost function is written as
andy components ofFCQW).in addition to—thfe 3D Iocations of-the E=||A-Z-T:A— M- 5H2 @)
world points. In the following, we refer to in-plane motios the
component of translation parallel to thé — Y world plane and where|| - ||> denotes the Frobenius norm. Since feature points may
rotation about thez-axis (Rp). The out-of-plane motion is th&- not be observed in all frames, some entries of the measutemen
axis translation { component of7.2,,), and the rotationk, that matrix are unknown. Unlike factorization-based approachaur
changes the reference vector orientation in the CCS. algorithm can cope with missing measurements.
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U1l Y Uln Uil Y Uln (1)

FTRRN T o o7 [ o ..o ][ [ wm| [esh —snf ot
wit Wi 0 Z 0 o 1M . 0 11 Win sin 6, cos 01 ty X1 - Xa
: : _ : . - = S Yi - Y,
Ym1 ., Ymn 0 0 E P : i (3 ) Uml ... Umn cosOp —sinfm, ti™ 1 1
I1l. FAST BILINEAR ESTIMATION OF SFM E™ w.r.t (té,t;) to zero to obtain

We solve for the unknowns by minimizing the cost functibn=
|A-Z—B— M-S|*>. We can choose from several first-order andts = Z C(2i—1,k) — — Z Xycost; + — Z Yisind; (12)
second-order algorithms fgr this minimizatjon [15]. We g#Bt an " k=1
alternation-style technique to solve for the unknowns, Wwitching - 1« )
between iterations where (1) the motion parameters are fkegat Z (24, k) n Z Xpsind; — — Z Yicost;  (13)
and structure parameters are estimated, with iteratiomsem?®) the k=1 k=1 k=1
structure is fixed and motion parameters are estimated. Denoting ;1 and uy; as the means of'(2i — 1,:) and C(2i,:)
respectively, andux and uy as the means of theX and Y
coordinates of points, we write the solution f and t@ as

SIH

A. Structure lterations

We rewrite the cost function (7) as a sum of terms correspndi th = poi_1 — pux cosb; + py sin6; (14)
to each feature poing € (1,--- ,n) as follows: E = Z 1 EY,
where E‘i corresponds to the cost function for the’ p0|nt and
the superscrlpztl is used to note that the total error is split into term¥Ve substitute the solution (15) in (11) and obtain
for each point. We pick the!” column of (6) to obtain

té = po; — py cosb; — pux sinb; (15)

_ _ 2
L 9 E" = HXOCOSOZ'—YOSiHQi—CO(Q’i—l,I)TH
(45 = T: ) fwn; )
v15(Z; _Tz2)/wlj X; + HXO sin0; + Y cos 0; — C’O(2i7:)TH (16)
B = ||| ui(Zi =T2)/ w2y | — M- |Y; 8)
: 1 where X and Y denote column vectors containing thé and Y
Umj (Z5 — T") /Wiy coordinates of all the points, anl® = X — ux, Y° =Y — py,
. i CO( i —1, ) C(2i—1,:)—u2i_1 andOO(Zi,:):C(Zi,:)—ugi.
We rewrite (8) to obtain We set the derivative w.rét; to zero and simplify to obtain
X; 2
J

E;i: H[M(:,l) M(:,2) —A(19)] + (B(:,7) + M(:,3)) (20 — 1,k) - (Xg sin0; + Y} cos 0;) +

J
(©)
where M(:,1) and M(:,2) are the first and second columns of
the motion matrix, containing the cosine and sine teris:, 3)
contains the in-plane components of translatidgx, ;) and B(:, j)

>
>

(2i,k) - (—Xf cos0; + Y} sin6;) = a7)

are the ;' columns of-the matrices! and B respectively. We Ve can simplify (17) to obtain
minimize (9) w.r.t(X;,Y;, Z;) at each structure iteration. The cost 0(0; N\ O _ MO(0: 1 N O
function is a linear system ifX;,Y;,Z;) and the minimum is tan; = C°(2i:) X7 - C(2i = 1) - ¥ (18)

obtained by linear least squares. Co(2i = 1,:) - X0+ C(24,:) - YO
X; We obtain two possible solutions féy from (18). One of them is a
[M(:,1) M(5,2) —A(5)] [yj} = —B(:,j) — M(;,3) (10) point of local maxima and the other is a point of local miniriiée
choose the solution that corresponds to the local minime.rmidtion
and structure iterations are repeated successively utgingination
criterion is satisfied. The iterations are terminated if deerease in
B. Motion Iterations the error function expressed as a percentage drops belawshntid

or if the iteration count reaches a maximum, whichever ifiexar
We rewrite (7) as a sum of terms corresponding to each frame

asE = >, E", whereE;" corresponds tp cost function of the
ith frame, and the superscript is used to note that the total errorC. Out-of-plane motion refinement iterations
is split into terms corresponding te-the motion parametérsach
frame. We extract thé2i — 1)*" and (2i)*" rows from (6) to obtain

J

We minimize (7) by refining the out-of-plane components of
motion for each camera. We rewrite (5) as
) . ; 2
E" = |C(2i—1,)~[cost; —sinb; ;] S| {U/w} (2T = <coset _smet) {xi 0

. o, ; 19)
+|C(2i,:) — [sin€; cosO; ti]- SH2 (11) vt /Wi sinfy  cosfy Yi— Ty(t)]

where, theC = AZ — B denotes the left hand side of (6). Wewhere|u;, vy, wy;])? = R(t) [zi,y:,1]T. We fix P, and{0;, T, T}}}
minimizing (11) to solve for{az,t;7t;} We set the derivative of to the current estlmates and minimize the following errgrction
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obtained from (19) In all our experiments, we have observed that the iteratadways
m converge to meaningful results.
Egide = Z {“ti/wti} (Z; — Tz(t))— Convergence in error value: If the initial error is E(®) and the
|| vt /wri error after structure iterations 8", then EV) < EO)_ |f the
. 2 error after motion iterations i€, then E? < M if G
(Cf’s O —sin et) H (20) is the error after out-of-plane iterations, thén® < E(?). Fach
sinf;  cos b iteration finds solutions for the variables that decreabesetror,
to solve for the height”? and the ground plane normal vector at eacE
frame. We use the LM algorithm [7] for solving this non-limdaast
squares problem. This minimization involves only threeapaaters
at any stage, two for the out-of-plane motion and one for Hraera

height. In later sections we refer to the proposed methoB&f W
which is an acronym for Fast Bilinear Structure from Motion.

x; -1
Y, - 1"

ence the error is non-increasing. Since the error is ldwended
y 0, the successive error values converge to a valiie
Convergence rate and speed of convergence: Iterations of low
computational complexity do not imply faster convergenate ror
lower time-to-convergence. The proposed algorithm falkhiw the
class of alternation techniques which are susceptible tbnftey
and are slower than second-order newton methods in thegevera
case [15-We-elaimp-based on strong experimental evigeratetib
. IV. ANALYSIS . proposed approach surprisingly violates this conventigrisdom,
A. Computational Complexity and Memory Requirements for the specificcase of large-sized problems starting frorapecific
Suppose there are views of n points with all points visible class of initial solutions with low out-of-plane motion errand high
in all views. Let SV D(a,b) = 4ab® + 8b> be the cost of carrying levels of in-plane motion error.
out ja-singularvalde-decompesition of a matrix witlrows andb
columns [16]. The main computational requirements of tieppsed _ V. SIMULATIONS
algorithm are the following. A. Implementation . .
« Depth Iterations: For each point, this involves solving a linear_ FOr BA, we use the SBA solver code [8] implemented in C.
system of size2m x 4 which is equivalent to a total cost of This uses LM minimization fpr non-linear least squares. mbemal
n % SV D(2m, 4), wheren is the number of points. equations are solved by using the Schur complement to factor

« Motion lterations: For each view, this involves performing theth® structure parameters and the resulting system is salset
computations in (18, 15) which is equivalent4e multiplica- LY decomposition—fer-the update-to the camera parameters. Th
tions andén additions and is therefor@(n) in computational ProPosed algorithm was also implemented in C with a MATLAB in
cost. This accumulates to a total costrafx O(n), wherem terfa}ce. The motion-structure alternat_lon iterations ando_f-plane

is the number of views. motion refinement iterations were written in C and the irsteef to
Direction vector and height refinementWe need to update switch between the two sets of iterations was written in MABL

only 4 parameters and hence this requires the solution of¥fh system calls to the corresponding C executables. Resifrom

4 % 4 linear system. For all the frames, this comes at a cost GPENCY were used to solve the linear systems correspondlitiget
m x SV D(4,4) — 768m per iteration. motion iterations. The LM implementation in C [18] was used f

the non-linear least squares minimization correspondintné out-
of-plane motion refinement iterations. The Conjugate gnatd{CG)
implementation in C [19] was used in the experiments to campa
with alternation for minimizing the bilinear system (7). @putation
time was measured using our implementation of a nanoseaoed t
The reported times include the total time taken to execut¢hal
operations within each C implementation except disk I/Orafyens.
) . ] Reconstruction problem generation: A reconstruction problem
The FBSfM algorithm has the flavor of iterative methods foyas synthesized by generatingpoints uniformly distributed within
projective structure from motion [12], [13]. Suppose we d1av the cube specified by-20 < X < 20, =20 < Y < 20 and 10 <
fixed points Py, P, - - - , P, observed bym cameras, we can write 7 < 40. The coordinates of the camera locations were uniformly
the projection of theg* point on_the_ith camera ag;; = %M?'Pj’ distributed in the cube specified by25 < X < 25, —25 < Y < 25,
where M; denotes thes x 4 projective matrix associated with thess < 7 < 105. The choice of dimensions is for illustration, and
i"" camera, and:;; denotes the projective depth associated witly practice the dimensions were scaled according to coemesi
the ' point in the i’ camera. In a typical BA algorithm, we The orientations of the cameras were chosen by first gengrati
minimize the reprojection error whichs = 3=, |pz‘j—%jMin|2 the directions of the principal camera axes and then chgasia
and solve forM; and P;. The objective function is highly non- rotation angle of the camera around this axis. The prinaipatera
linear and the results are dependent on the availability aifdg axis was chosen by generating a random point inxhe Y plane
initialization points [6]. Hence, many authors consider $implified  that specifies the point of intersection of the principalsaith this
(but related) objective functionfsy;,, = Y, ;|zijpi; — M:Pj|>.  plane. The rotation angle of the camera axis around theipahaxis
The proposed algorithm is similarly derived by scaling (#)the  was randomly chosen betweérto 2r. This scheme for generating
(Z; — Tz(t)). The difference is that unlike earlier techniques, wepoints and cameras ensured a wide variation in the camericesat
use the additional information to leverage the bilineanfan the and point locations, to mitigate any potential bias in thporeed
Euclidean frame, without using slack variables. Simutatiesults results to the choice of reconstruction problem. Imageufegpoints
suggest clear advantages in speed and accuracy of the ptbpagere obtained by reprojecting the 3D points on the camerasdcha
algorithm when the additional information has low error. on perspective projection. The parameters of the camere: Viaral
Issue of trivial minima: Oliensis [14] pointed that existing length= 320, principal point= (320, 240) and image size= 640 x
projective bilinear alternation techniques [12], [13] eerged to 480. Moderate Gaussian noise was added to the reprojected image
“trivial” solutions with nonsensical structure and motiestimates. feature locations to simulate feature detection errors.

Totally, each iteration of FBSfM has a computational cosDofn).

In comparison, an SBA iteration has complexi®fnm + nm? +
m?). Linear multiview reconstruction [17] involves solving iadar
system of size(3n + 3m) x (3nm) whose computational cost is
SV D(3n + 3m, 3nm) = 108(m>n? + m?n3) 4+ 216m3n>.

B. Discussion
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Height Ground plane vector error the best of CG or LM) is listed in Table | for each choice of oft-

error 0 3 6° 9° 12 . -

0% 0 0 0 12 yi\ plane motion errors. This suggests that for moderate |@fedsrors
3% 02 | 04 | 06 | 06 6 in the out-of-plane motion, alternation turns out to be aogtinal
52% | 86 | 88 | 84 ] 9 | 128 choice of algorithm in roughlyt7% of cases. At low to moderate
137% | 176] 188 188] 17.8] 20 errors where we propose the use of our algorithm, altennatims
26% 198 | 214] 222 206 | 194 . . . .
39% 1 206 | 266 | 234 | 26.6 | 21.4 out to be suboptimal in roughlp% of cases. In practice, since
52.1% | 27.4 | 29.8 | 27.8 | 30.4 | 232 we switch between in-plane and out-of-plane iterations, effect

of suboptimality in9% of the cases does not adversely affect the
structure and motion reconstruction.

We compared the number of iterations and times taken for each
algorithm to reach convergence, where the error functiamedses
by less thar.00001%. We find that alternation, CG and LM take an
average time 00.0257, 0.0550 and 2.8875 seconds respectively. In

SfM Initialization: Initial motion estimates are obtained byother words, CG take%.1424 times longer, and LM takes12.5413
perturbing the ground truth motion. The in-plane and ouplahe times longer than alternation to converge. The correspondiv-
motion components are perturbed separately, with highrenm eraged number of iterations i8.4882, 316.8153, and 96.5334
in-plane components and low errors in out-of-plane motiomgo- (although number of iterations do not directly compare)eFrge
nents. Ther andy locations are displaced by a vector that is orientetime taken by LM may be attributed to the large Hessian thagtmu
in a random direction in theXY plane, and whose length is abe inverted at each iteration. Using a sparse implementatid-M
specified fraction of the maximum dimension of the recomsion. (similar to SBA), we may be able to reduce the computatioretim
For example, a70% error in the in-plane translation means thaHowever, we did not implement sparse LM since in a later exper
the camera center was displaced by a vector of leagth 50 in  ment we demonstrate that the overall FBSfM algorithm toclsée
the XY plane. A60° error in the in-plane rotation angke means time-to-convergence compared to the SBA implementatiajurg 1
that  was perturbed in either the clockwise or counterclockwisghows convergence plots of the three algorithms(f6f%, 6°) error
direction by60°. A 10% error in the out-of-plane translation meansn out-of-plane motion. The red curves corresponding tinddr
that each camera center was moved either in the positivegatime alternation are largely below the blue CG and black LM curves
Z direction by0.1 x 50. The ground plane normal is perturbed bythis plot, a lower curve implies a faster convergence rake plots
adding a random vector to it such that the new vector makesslaow the same trend for other choices of error levels. Thengtr
pre-specified angle with the original vector. The initialues for
the 3D coordinates of feature points are obtained by trikatigg Convergense pots for inear alermation, GG and L
each point using-the image feature locations and the irdatera ‘
motion parameters, after solving the linear system of actira
iteration in (10)). All algorithms are initialized with theame initial
solution and executed on-the identical machines under im#nt

loading conditions—when—+eperting-comparative—results.

B. Comparative evaluation of bilinear alternation

We compare the performance gf Bilinear alternation, CG and
LM for minimizing the objective function in (7). The alterian
approach chosen is the motion-structure iterations asriescin
the paper, where (7) is minimized with respect to the in-plarotion
parameters only. We analyze the results of the minimizatising
the three approaches for various levels of out-of-planganarror.
Conventional wisdom suggests that second-order newtohadgt
perform best for the matrix factorization problem [15]; fexer the ) : Compuaion e nseconds
results of this experiment for the case of low out-of-planetion
error are surprising because they SqueSt.that blllr.]?amamon Fig. 1. This figure illustrates convergence curves plottigLog of error versus
performs fastest under the assumed operating conditions. computation time for the minimization of (7), using bilimegternation, CG and

A reconstruction problem is obtained by generatiitgrandom LM. The plots for bilinear alternation are superior to théesttwo in terms of

world points and10 cameras as described above, with4% of convergence rate because the bundle of red curves areyldrglelw the blue
' d black curves. The reconstruction problem used for théss involved10

the image feature measuremepts !(nown' The ground planeahor@gmeras and0 features. We used a perturbation(8%%, 6°) for the out-of-plane

vector at each camera location is perturbed such that the ngwslation and ground plane normal angle error respéytive

vector makes angles ab°,3°,6°,9°,12°) with the ground-truth

vector. The camera centers are perturbed alongZtfaxis of the advantage in computation time along with the fact that aétéon

WCS by errors 0f0%, 3%, 5.2%, 13%, 26%, 39%, 52.1%). For each converges to the same solution as CG and LM under low out-of-

choice of errors in out-of-plane motion components, we camap plane noise levels justifies its use under the operatingitiond of

the performance of the three algorithms %00 runs. The in-plane the paper (low error in out-of-plane motion).

motion components are perturbed byl@% error in theX — Y

locations and @0° error in the in-plane rotation angle to obtain thé>. Comparison of FBSfM with SBA

starting point for the three approaches. The total numbeurns of We generated a reconstruction problem with cameras and

the minimization for all cases was500. 50 feature points and6% of the image measurements known.
The percentage of runs for which bilinear alternation pan® Two sets of initial camera motion solutions were generated f

suboptimally compared to LM or CG (i.e. with higher error riha different choices of error levels in motion components. Sdtad

TABLE |
PERCENTAGE OF RUNS ON WHICH THE SOLUTION OALTERNATION WAS
HIGHER THAN THE MINIMUM OF THE SOLUTIONS OFCG AND LM.

Bilinear|

Log(Error)
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perturbations of(12%, 25°,2.7%, 2°) in the in-plane translation, Cumulative frequency graphs of reprojection error
in-plane angle, vertical position and ground plane normedter o ‘ ‘ ‘ ‘
respectively. Set 2 had perturbations (@6%, 35°,0.5%, 5°). Each a0}
set had9o0 different initial solutions. The structure initializatie
were obtained by triangulating each 3D point using the imag
feature locations and initial camera parameters, afterirgplthe 700~
linear system (10)-ef a structure iteration.

In set 1,;minimum error reconstruction produced by SBA wa
0.3199 and that produced by our algorithm was3570. In 86%
of the runs, the SBA reconstruction error was lower than th
minimum error produced by our algorithm. The slightly higlkeror
of our algorithm on successful runs compared to SBA is bexau 0
we minimize the algebraic as opposed to the reprojectioor.err 2000
On the remainingl4% of the runs, SBA produced an error of
above 5. In comparison, our algorithm produced an error lowe
than 0.4 on 99% of the runs. This illustrates the reliability of our 0 -
algorithm in producing good reconstructions when initial from ! Mean reprojection error 0
a number of random initial solutions. In set3®% of the runs had a
lower reprOchtlon error for SBA tha’? for FBSfM. The dlsllth)ﬁ Fig. 2. This figure shows the cumulative frequency graphsefreprojection
of reprojection errors of both algorithms on each of the S8tS error for SBA and FBSTM along with the error distribution btinitial solutions.
illustrated in figure 2. The red curves are for set 1 and the bl@Thepreblem-invelvedl0 cameras and0 feature points. The red curves show
curves for set 2. The figure plots the cumulative distribngiof the ~the results for set 1 with perturbations @f2%, 25°, 2.7%, 2°) in the in-plane

L . . . . translation, in-plane rotaion angle, out-of-plane tratish and ground plane

reproljectlon error, hence a higher curve ImpIIQS a betteiopming normal angle error respectively. The blue curves show thaltefor set 2 with
algorithm. In both sets, the curve for FBSiM is largely abdlat initial motion error of(20%, 35°,0.5%, 5°). In both sets, the graph for FBSfM
for SBA indicating better performance. is above that of SBA indicating better performance.

We repeated the experiments on a reconstruction probleim wit
45 cameras an250 feature points, with96.4% measurements
known. We obtained00 initial starting points by perturbing with 96.6 iterations and the total computation time ranged frzoa.3 to
motion error of(30%, 25°, 3.75%, 4°). The initial reprojection errors 254.2 seconds with an average 2£3.6 seconds. It is possible that
ranged from199.4611 to 3476.6 and the SBA code reported failuresPecause of the termination conditions, FBSfM had not cayecr
in minimization on70.6% of the runs. On the remaining9.4% 1o its global optimum in a strict sense but had exhibitedifiaty
of the runs on which SBA succeeded, our algorithm producd@yond100 iterations. However, for practical purposes, this is not
reconstructions whose final reprojection error ranged ffoea77 ~ consequential since a minimum reprojection error solutian be
to 0.7603. SBA produced an error 06.3723 on 87.5% of the realized by directly minimizing the reprojection error niSBA.
succeeded runs, and errors ranging frer526 to 278.6074 on Accumulated over all the runs, the amount of time taken ferdit-
the remaining12.5% of the succeeded runs. On th®.6% of Of-plane motion refinement iterations was.5% of the total time
the 0rigina| runs on which SBA reported fa”ures' our a|g'ur| Spent. This fraction ranged from6% to 55.4% for all the runs.
produced reconstructions ranging fraim6209 to 0.7848, whereas  Sparse BA required iterations ranging framto 4639 for conver-
the errors of SBA ranged from08.28 to 1.0993¢ + 05 (which were gence, with an average number of iterationsit®f.3. Convergence
very close to the initial errors). These experimental tssclearly Was declared if the norm of the update to the parameter vector
demonstrate the advantage of our algorithm over SBA, beciusWas less than £ — 12. The total computation time taken ranged
genera”y avoids getting stuck in poor local minima and isrenofrom 157 seconds t017864 seconds with132 of the 138 runs

N —o— FBSFM | B

~ x - sBAI
+ - Initial | 4

—— FBSFM I

~ 5 - SBAIl

+ ¢ O Initial 1

Run count
a
=}
5]
T

10

consistent in its results. requiring computation time larger than the maximum timestaky
FBSfM on all the runs. Figure 3 shows the convergence plats fo
D. Comparison of convergence rates of FBSfM and SBA FBSfM (plotted in blue) and SBA (plotted in red). SBA exhgbfaist

We compare the convergence rates of our algorithm with SB@nvergence when the solution is very close to the globaimmim.
on a reconstruction problem witB00 cameras and50 feature On the other hand, FBSfM exhibits slow convergence closdigo t
points, with62% of the image measurements known. We generatgginimum. Although FBSfM is faster than SBA overall, thesetw
350 initial solutions by perturbing the ground truth motion kvia algorithms are good candidates to be used together in achybri
3.33% error in the in-plane translation, &% error in out-of-plane approach. It must be noted that this advantage in computéitite
translation, al5° error in the in-plane rotation angle andiaerror is larger as the problem size increases (correspondingetsitie of
in the ground plane vector. SBA converged successfullypinof the the matrix that needs to be inverted). We have observed ¢hao
350 runs, among which38 converged to the global minimum, with cameras, FBSfM is much faster than SBA, andifoccamerassB A
a reprojection error of.1316. On thesel 38 runs, FBSfM converged is faster. The critical problem size above which the redudessian
to solutions with errors ranging from1427 to 1.1432. Convergence Mmatrix inversion or the slowness of gradient descent statecome
of FBSfM was declared if the number of iterations exceedea a disadvantage for SBA depends on the machine and the pigess
or if the error decreased by less than— 5 or 0.0001% whichever resources available. However, for mobile devices, we exfiee
was higher. We attribute the slightly higher reprojectianoe of memory limitation to be the bottleneck where FBSfM would find
FBSfM to the fact that it minimizes the algebraic error asaggul the most advantageous use (with a low critical problem size)
to the actual reprojection error. Since the final errors oSHB are
very close to those of SBA, we believe this is very close to tHe A note on alternation methods
global optimum. For thea38 runs described earlier, the number of A popular alternative to SBA that falls within the class of
iterations taken by FBSfM ranged frof8 to 102 with an average of alternation algorithms is resection-intersection [6].isTimvolves
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Convergence plots of FBSFM and SBA
T T

Log(Reprojection error — Global minimum)

Computation time in seconds

Fig. 3. This figure illustrates the convergence curves iplptthe Log of the
reprojection error versus computation time for FBSfM andAS# 138 runs.

The blue curves are for FBSfM and the red ones are for SBA. Matethe blue
curves are clearly below the red ones indicating that FBStiviverges faster
compared to SBA in this experiment.

iterations where (1) the cameras are fixed and structureblas

are updated, and (2) the structure is fixed and camera matri

are updated. Each iteration is of low complexity similar tor o
bilinear alternation, but it involves non-linear minimim in all the
iterations. The key-difference of our work is the use of thditmhal
measurements for the decomposition of the motion paramétat
leads to a better performing algorithm for low out-of-planeise
conditions. Our experimental results do not show a cleaamtdge
over either SBA or resection-intersection from a generakglof
initial solutions. However, the advantage shows up venartje
when the out-of-plane motion is known (with low error) thgbu
sensor measurements. To the best of our knowledge, we do
know of a previously proposed variant of resection-intetisa for
the specific setting of the paper. Earlier works [6] have wstd
the most general variant of resection-intersection and Haund

triangulate the 3D points using structure iteration eaqumesi(10).
The triangulated3D locations were used as the initial structure
solution. Both FBSfM and SBA were initialized with the same
starting point. The initial reprojection error was7.49. FBSfM
converged to a solution with an error ©f99 and SBA converged
to a solution of111.88. Figure 4 illustrates the top view of the
reconstructed 3D points and the camera path corresponditiget
FBSfM solution. When we initialized SBA with the final soloii

of FBSfM, the reprojection error reduced 1B42.

Fig. 4. This figure shows the top view of the reconstructed 8 and the
camera path obtained by solving for structure and motiomfib0 images of
the streetview sequence using the proposed algorithm. ddheaints show the
camera centers and the green lines show the optical axiskteaera location.
A few images in the sequence are shown in the left of the fiddeecan clearly
distinguish the three intersecting roads in the reconsitnucwith the road in the
middle approximately twice as wide as the other two roads.

nobince we do not currently use sparse representations for mea
surement matrices, our implementation was not suited tcutge
multiple trials on the earlier sequence for measuring cdatpn
times. Hence we select a subsequence with lesser numbeatofde

it to be suboptimal compared to SBA in terms of accuracy. Basgoints. From the SfM solution with errdr342, we selected the first

on this study, we conclude that the cumulative frequencyligaf
resection-intersection are expected to be below that of . SBA

VI. EXPERIMENTS
A. SfM on StreetView data

70 frames, andr55 points with reprojection error less tharfor all
frames. We used SBA for thgs5 point subsequence and obtained
an SfM reconstruction with error @f4013. We repeated the camera
configuration of ther0 cameras twice by translating in thé and
7 directions by chosen distances. This produced a tota210f

The Google StreetView Research dataset consists of raadsidmeras. We generated the feature points on the virtualreanhy
image sequences and metadata with the locations and digista reprojecting the original 3D points on each of the imagesaading

of the camera corresponding to each image, solved using G&S

eandom noise to the pixel locations, to simulate featuresatiin

IMU measurements deployed onboard. The metgdata—conttieederrors. We use this SfM problem withi0 camerasy55 points with
additional measurements in the form as required by the pepo 10% of the measurement matrix known, as the test problem for

algorithm. We chose a segment of the dataset contairiegmages
when the car is moving on a single road. We obtained feataokdr

measuring computation times. The ground truth reprojacéoror
(global optimum) for this problem was3892. We generated initial

by SIFT feature detection and matching, and used RANSAC laad solutions by perturbing the in-plane translationiays, out-of-plane

epipolar constraint to prune out outliers. After these ymetessing
steps, we obtained145 distinct feature tracks in the sequence.
We obtained an initial solution for the camera motion by assg

translation byl %, in-plane rotation angle by and direction vector
by 1°. Among thel5 runs of SBA that terminated successfully, the
final reprojection errors of two best runs were04 and 1.311,

a straight line motion and placing the camera centers gquadind the rest of the errors were all abax@ In contrast, the final

distributed on the line. We initialized the out-of-planenmaa
rotation matrices using the direction vectors obtainednfrthe

errors of FBSfM ranged fron9.3906 to 0.3948 with the motion
and structure reconstructions very close to the ground.trihe

metadata, and the in-plane rotations were all fixed to zete Taverage time taken by the proposed algorithm to reach ai@olut

heights of the cameras were later fixed to the measuremetatisieth
from the metadata. This provided an initial solution for ttieenera
motion. We used this initial motion and the feature trajge®to

was45.957 seconds. Convergence of our algorithm was declared if
the iteration count reachedo or if the reprojection error decreased
by less thanse — 5. All trials used 100 iterations. The algorithm
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probably exhibjt flatlining behavior beyond iterations since the
error was decreasing very slowly. However, beyond thistp@BA
is a better choice for minimizing the reprojection error aah be than those produced by SBA (as is demonstrated by the
used in a hybrid approach along with FBSfM. We do not estirtiage cumulative frequency graphs).

average time taken by SBA since none of the runs convergee clo Based on the above findings, our algorithm seems to be a better
to the global optimum. However, the time taken for the twotbeghoice of reconstruction algorithms in many practical scirs

runs werel36.7 and 138.5 seconds. Figure 5 plots the convergenc@here it is possible to obtain the additional measuremestsea

curves for both algorithms. The bundle of blue curves for fBS quired by accurate sensing devices. The scalability of therichm
are clearly below the red ones of SBA indicating a faster a@ler g|so lends itself useful for large scale practical problems

convergence rate. The curves suggest that towards theo$ttre
minimization, FBSfM converges faster but when the solutisn
close to the minima, SBA converges faster. These resulistiite

3) When initialized from a large number of random starting
points, FBSFM seems to converge to solutions that are lower
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