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Abstract—We investigate a bidirectional relaying system which
uses physical–layer network coding and non–coherent multi–
input multi–output (MIMO) signal processing. With non–
coherent codes on Grassmannian manifold, a receiver employing
generalized likelihood ratio test (GLRT) algorithm offers the
maximum–likelihood performance even without any channel state
information (CSI). We propose a new family of non–coherent
Grassmann codes which enjoy a significant coding gain by
introducing a trellis–coded modulation (TCM) through an affine–
lattice convolution with exponential mapping. We develop a
design method of individual TCM codebooks for multiple users
in non–coherent two-way relaying channels with network coding.
Since the proposed scheme does not require CSIs, it effectively
deals with time–varying fading channels.

I. INTRODUCTION

In the last decade, multi–way relaying which exploits net-
work coding [1] at the physical layer has received a significant
amount of attention [2–14]. The author has optimized sig-
nalling constellations for network–coded bidirectional relaying
in [10, 11], and extended it for convolutionally–coded systems
in [12], for adaptive modulations in [13], and for multi–input
multi–output (MIMO) systems in [14]. We have found that
physical–layer network coding should be adaptively changed
according to the channel state information (CSI), and that non-
linear network coding can significantly improve data through-
put. The most of literature, including our previous works [10–
14], has considered coherent detections which require CSI
at receivers (a.k.a. CSIR). In this paper, we propose a new
approach of network trellis–coded modulation (NetTCM) for
non–CSIR scenarios by using non–coherent MIMO signalling.

Without CSI, we require non–coherent communications.
Some information–theoretical studies on non–coherent MIMO
communications, e.g. [15, 16], have motivated the signal de-
sign of non–coherent codes, which include unitary space–
time constellations [17–19], exponential mapping Grassmann
codes [20, 21], non–parametric Grassmann codes [22, 23], and
differential space–time modulations [24, 25]. It was shown in
[15] that unitary space–time codes asymptotically achieve the
non–coherent channel capacity. For such codes, the maximum–
likelihood (ML) performance can be offered by a generalized
likelihood ratio test (GLRT) decoding [26].

The contribution of this paper includes a codebook design
suited for non–coherent bidirectional MIMO relaying systems
employing physical–layer network coding. We propose a new
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Fig. 1. Non–coherent bidirectional MIMO relaying systems.

non–coherent TCM which uses affine–lattice convolution and
exponential mapping on the Grassmannian manifold. Using
the gradient approach, the design method jointly optimizes
network coding and non–coherent Grassmann TCM in an iter-
ative fashion. Through computer simulations, we demonstrate
that the proposed NetTCM scheme significantly improves
performance in non–CSIR scenarios.

Notations: Throughout the paper, we describe matrices and
vectors by bold–face italic letters in capital cases and small
cases, respectively. Let X ∈ C

m×n be a complex–valued
(m × n)–dimensional matrix, where C denotes the complex
field. The notations X∗, XT, X†, X−1, tr[X], det[X],
and ‖X‖ represent the complex conjugate, the transpose, the
Hermitian transpose, the inverse, the trace, the determinant,
and the Frobenius norm of X , respectively. The operator
vec[·] denotes the vector–operation which stacks all columns
of a matrix into a single column vector in a left–to–right
fashion, and the operator ⊗ stands for the Kronecker product
of two matrices. The set of real numbers is denoted by R, and
Im ∈ R

m×m denotes an m–dimensional identity matrix. The
m–element integer ring is written as Zm � {0, 1, . . . ,m−1}.

II. NON–COHERENT MIMO TWO–WAY RELAYING

A. Two–Way Relaying Systems

We consider a non–coherent bidirectional relaying system
in which there are three users, Alice a, Bob b, and Richard
r, as depicted in Fig. 1. The radio transceivers for those users
are equipped with Ma, Mb, and Mr antennas, respectively, for
MIMO communications. Alice and Bob wish to exchange data
by help of Richard, supposed that the direct wireless link be-
tween Alice and Bob is seriously attenuated. We focus on two–
stage relaying protocol with physical–layer network coding.



At the first stage termed multiple–access (MA) stage, Alice
and Bob simultaneously transmit data to Richard. Richard
then broadcasts network–coded data to Alice and Bob in the
following stage termed broadcast (BC) stage. In this paper,
we investigate non–coherent communication systems wherein
any users do not have CSI either for transmitting or receiving.
For such a scenario, we use non–coherent Grassmann codes
which do not need any pilot or training sequence.

B. Multiple–Access (MA) Stage

The source data sk(n) to be transmitted from the user
k ∈ {a, b} at the n–th symbol is drawn from an integer set
ZQk

where Qk denotes the alphabet size. The D–symbol data
sequence sk � [sk(0), sk(1), . . . , sk(D − 1)] is sequentially
buffered into an Nk memory as

sk(n) =
[
sk(n) sk(n− 1) · · · sk(n−Nk + 1)

]T
, (1)

where Nk denotes the constraint length in symbol for trellis
coding (thus, the number of trellis states becomes QNk−1

k ).
The terminal user k ∈ {a, b} transmits the multi–dimensional
(or, space–time) TCM signals at the n-th symbol (n ∈ ZD):

Xk(n) = Ck

(
sk(n)

) ∈ C
Mk×L, (2)

where the constellation mapper Ck(·) selects a codeword from
the non–coherent Grassmann codebook Xk:

Xk(n) ∈ Xk �
{X k[0], . . . ,X k[QNk

k − 1]
}
. (3)

The Grassmann TCM consists of L sub–symbols per code-
word. We assume L ≥ 2(Ma + Mb). The q-th codeword is
denoted by X k[q]. We will later describe a design method of
the TCM codebook for network–coded relaying systems.

During the MA stage, Richard receives

Y r(n) = Ha(n)Xa(n) + Hb(n)Xb(n) + Zr(n)

=
[
Ha(n) Hb(n)

]︸ ︷︷ ︸
Hab(n)

[
Xa(n)
Xb(n)

]
︸ ︷︷ ︸

Xab(n)

+Zr(n), (4)

where Y r(n) ∈ C
Mr×L, Ha(n) ∈ C

Mr×Ma , Hb(n) ∈
C

Mr×Mb , and Zr(n) ∈ C
Mr×L denote the received signal,

the MIMO channel matrix from Alice to Richard, the MIMO
channel matrix from Bob to Richard, and the additive noise
at the n-th time instance. The compound channel matrix
Hab(n) ∈ C

Mr×(Ma+Mb) may rapidly change along a time
instance n and, hence, it is hard for receivers to accurately
estimate the channels. The joint codeword Xab(n) ∈ Xa×Xb

shall be well designed so that Richard can reliably decode it
in non–coherent multiple–access channels.

The GLRT decoding [26] (namely, blind ML decoding for
non–coherent receivers) is performed to obtain the most–likely
estimates, ŝa and ŝb, as follows:{

ŝa, ŝb

}
= arg min

ŝa,ŝb

inf
Ĥab(n)

∑
n∈ZD

∥∥∥Y r(n)− Ĥab(n)X̂ab(n)
∥∥∥2

= arg min
ŝa,ŝb

∑
n∈ZD

∥∥∥Y r(n)X̂
⊥
ab(n)

∥∥∥2

, (5)

where X̂
⊥
ab(n) is an orthogonal projection matrix of an esti-

mate X̂ab(n) such that X̂ab(n)X̂
⊥
ab(n) = 0. An orthogonal

projection is written as

X̂
⊥
ab(n) = IL − X̂

†
ab(n)

(
X̂ab(n)X̂

†
ab(n)

)−1

X̂ab(n), (6)

which is an idempotent matrix whose eigenvalue is either one
or zero (its rank is at most L−Ma−Mb). The joint projection
set is denoted as X

⊥
ab �

{X⊥
ab[0], . . . ,X⊥

ab[Q
Na
a QNb

b − 1]
}

.
Note that the orthogonal projection matrix is predetermined
from the original codebooks Xa and Xb. This GLRT sequence
estimation along the trellis–state diagram enables Richard
to decode TCM signals even without CSI if the matrix
X̂ab(n)X̂

†
ab(n) is non–singular. We propose a design method

of such a codebook to maximize the codeword distance.

C. Broadcast (BC) Stage with Network Coding

With the ML estimates ŝa(n) and ŝb(n), Richard first
generates a combined data sr(n) using a network coding
function f(·). We may use a network coding based on a
modulo addition over ZQr :

sr(n) = f
(
ŝa(n), ŝb(n)

)
= ŝa(n) + ŝb(n) mod Qr, (7)

with an alphabet size of Qr = max(Qa, Qb). The network
coding function will be optimized according to the TCM code-
books. The network–coded data sr(n) is buffered to construct
an Nr–symbol constraint vector sr(n) � [sr(n), . . . , sr(n −
Nr + 1)]T, and it is mapped on the Grassmann TCM:

X r(n) = Cr

(
sr(n)

) ∈ C
Mr×L′

, (8)

where the codeword is drawn from the codebook Xr �
{X r[0], . . . ,X r[QNr

r − 1]}. The sub–symbol length L′ can be
optimized. The network TCM (NetTCM) signals are broad-
casted from Richard to Alice and Bob, who in turn receive

Y a(n) = Ga(n)X r(n) + Za(n), (9)

Y b(n) = Gb(n)X r(n) + Zb(n), (10)

respectively. The BC channel matrices Ga(n) ∈ C
Ma×Mr

and Gb(n) ∈ C
Mb×Mr change in time and, thus, can be

independent of the MA channels, Ha(n) and Hb(n).
With the side information sa, the GLRT sequence estimation

for Alice is employed as follows

ŝ′
b = arg min

ŝb:ŝr=f(sa,ŝb)

∑
n∈ZD

∥∥∥Y a(n)X̂
⊥
r (n)

∥∥∥2

. (11)

In an analogous way, Bob obtains the ML estimate ŝ′
a using

the own information sb.

III. NON–COHERENT GRASSMANN TCM DESIGN

A number of non–coherent codes have been reported, e.g.,
unitary space–time codes [17–19], Grassmann codes with
exponential mapping [20, 21], Grassmann packing codes with
numerical optimization [22, 23], and differential modulations
[24, 25]. In this paper, we incorporate non–coherent space–
time block codes with space–time trellis codes by using the
exponential mapping and affine–lattice convolution techniques.



A. Design Criteria: Pairwise Error Probability

During the MA stage, a pairwise error probability is ex-
pressed as

Pr
({Xab(n)} → {X ′

ab(n)} | {Hab(n)})
� 1

2
erfc

√∑
n

∥∥Hab(n)Xab(n)X ′⊥
ab (n)

∥∥2

4σ2
, (12)

given instantaneous channels {Hab(n)}. Here, σ2 denotes
the noise variance. The error probability averaged over i.i.d.
Rayleigh fading channels of unity power is given as

EHab(n)

[
Pr
({Xab(n)} → {X ′

ab(n)} | {Hab(n)})]

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

∏
n

∏
m

(
1 +

λm

[
Ω(n)

]
4σ2

)−Mr

, (fast fading),

1
2

∏
m

(
1 +

λm

[∑
n Ω(n)

]
4σ2

)−Mr

, (slow fading),

(13)

where λm[·] is the m-th eigenvalue of a matrix and

Ω(n) = Xab(n)X ′⊥
ab (n)X†

ab(n). (14)

For high and low SNRs, we should respectively maximize the
determinant and the trace in fast fading as follows

d2
det = min

∏
n

det
[
Ω(n)

]
, (15)

d2
tr = min

∑
n

tr
[
Ω(n)

]
. (16)

In slow fading channels, while the trace criterion does not
differ from the one above, the determinant criterion becomes

d′2det = min det
[∑

n

Ω(n)
]
. (17)

Note that the codewords pair such that f(sa, sb) =
f(s′

a, s
′
b) does not incur decoding error at the destination with

the network coding function f(·). In this paper, we design the
TCM codebook for network coding to minimize the pairwise
error probability based on the above–mentioned criteria.

B. Gradient Optimization of NetTCM

Now, we numerically optimize non–coherent NetTCM
codebook in a similar way of [10, 23, 27] with a TCM exten-
sion. For numerical Grassmann packing, we adopt the gradient
method to optimize the determinant and the trace criteria.

Given the minimum determinant metric d2
det for an er-

roneous path in the trellis–state diagram, the gradient is
expressed over log–domain as follows

∂ log d2
det

∂X∗
ab(n)

= Ω−1(n)Xab(n)X ′⊥
ab (n), (18)

∂ log d2
det

∂X ′∗
ab(n)

= −X ′+
ab (n)X†

ab(n)Ω−1(n)Xab(n)X ′⊥
ab (n).

(19)

Here, [·]+ denotes the pseudo inverse. In slow fading channels,
the gradient of the determinant metric is modified by replacing

Ω(n) with
∑

n Ω(n). For the minimum trace metric d2
tr, we

have the gradient

∂d2
tr

∂X∗
ab(n)

= Xab(n)X ′⊥
ab (n), (20)

∂d2
tr

∂X ′∗
ab(n)

= −X ′+
ab (n)X†

ab(n)Xab(n)X ′⊥
ab (n). (21)

Our joint design method of TCM codebook and network
coding function based on the gradient optimization is de-
scribed below:

1: Generate random codewords {X a[q] : q ∈ ZQNa
a
} and

{X b[q] : q ∈ Z
Q

Nb
b

} such that ‖X k[q]‖2 = Mk

2: Set initial network coding function f(sa, sb) = sa + sb

(mod Qr) for sa ∈ ZQa and sb ∈ ZQb

3: Calculate Ω(n) for any erroneous pairs in the trellis-state
diagram

4: Search for the worst pair which has the minimum metric
in determinant or trace, and yields different network
codewords, f(sa, sb) �= f(s′

a, s
′
b)

5: Calculate the gradient ∇ for the pair
6: Update codewords as X k[q]← X k[q]+β∇, where β ∈ R

is a stepsize factor which is optimized by line searching
to maximize the determinant or trace metric

7: Normalize the energy such that ‖X k[q]‖2 = Mk

8: Repeat from 3 until convergence of TCM
9: Optimize network coding function f(·) based on updated

metrics by closest–neighbor clustering method [10, 11]
10: Repeat from 3 until convergence of network coding

Using multiple initial codewords or small perturbations of
optimized codebook, the gradient method yields well–designed
codebook. Note that a pairwise error probability during the BC
stage can be also minimized by designing the TCM codebook
Xr in a similar way.

C. Non–Coherent TCM with Exponential Mapping

In order to boost the convergence of the gradient optimiza-
tion, we propose a new family of Grassmann TCM design
by introducing an affine–lattice convolution with exponential
mapping. As in [20, 21], each codeword is mapped on the
Grassmannian manifold such that X k[q]X †

k[q] = IMk
by

exponential mapping

Xk(n) =
[
IMk

0Mk×(L−Mk)

]
exp

([
0Mk

Bk(n)
−B†

k(n) 0L−Mk

])
,

(22)

where Bk(n) ∈ C
Mk×(L−Mk) is a multi–dimensional affine–

lattice convolution:

vec
[
Bk(n)

]
= Θksk(n) + θk. (23)

The lattice generator matrix Θk ∈ C
Mk(L−Mk)×Nk and the

affine shift vector θk ∈ C
Mk(L−Mk)×1 are optimized later.

The chief difference from the one proposed in [20, 21] lies in
the extension to trellis coding by the affine–lattice convolution.



D. Optimization for Exponential Mapping Grassmann Codes

We use the aforementioned gradient method to design
the exponential mapping Grassmann TCM by optimizing the
lattice generating matrix Θk and the affine shift vector θk.
The gradient of the determinant or trace metrics in terms of
Θk and θk is obtained as follows

∂η

∂γ∗ =
∑
m

tr
[∂X†

ab(m)
∂γ∗

∂η

∂X∗
ab(m)

]
, (24)

where η ∈ {d2
det, d

2
tr, d

′2
det} is an optimizing metric, and

γ ∈ {Θk,θk} is a parameter to be optimized. The affine con-
volution with exponential mapping can significantly reduce the
total number of parameters to be optimized from QNa

a MaL +
QNb

b MbL to Ma(L−Ma)(Na + 1) + Mb(L−Mb)(Nb + 1);
e.g., from 512 to 36 for Qa = Qb = 4, L = 8, Ma = Mb = 2
and Na = Nb = 2. It results in a faster convergence in the
gradient optimization.

IV. PERFORMANCE EVALUATION

Now, we show the performance advantage of our optimized
NetTCM over the conventional schemes through computer
simulations. We use a sub–symbol length of L = L′ = 8
for non–coherent Grassmann codes with a cardinality of
Qa = Qb = 4. The constraint length is set to be Na = Nb = 2.
Every node uses two antennas, i.e., Ma = Mb = Mr = 2. The
transmission block sequence consists of D = 64 symbols.
We assume that the channel is frequency–flat Rayleigh fading
with the maximum Doppler frequency fDTs = 1/200 where
Ts denotes the symbol duration. The CSI is not available at
any users, and the GLRT decoding algorithm is employed. We
assume the average SNR is identical for the link between Alice
and Richard and that between Bob and Richard, for simplicity.
The symbol timing is assumed to be synchronized for Alice
and Bob.

Fig. 2 shows end–to–end bit error rate (BER) performance
as a function of average SNR. The performance curve of
original Grassmann codes in [20, 21] is presented as a ref-
erence. Since both Alice and Bob use the same Grassmann
codes without TCM, the performance is severely degraded
due to the multiple–access interference (MAI) during the
MA stage. The MAI effect still degrades the performance
of non–coherent TCMs which achieves coding gains if we
use the identical codebooks. One can observe that our design
method significantly improves performance. It is because the
codebooks are well optimized to be near–orthogonal so that the
MAI is effectively reduced at the relaying node. Our proposed
Grassmann NetTCM offers additional 2.5 dB gains at a BER of
10−4. It is expected that the performance is further improved
by using high–order super–block GLRT decoding proposed in
[27], for fast fading MIMO channels of non–CSIR scenarios.

V. CONCLUSION

In this paper, we proposed a blind network trellis–coded
modulation (NetTCM) which jointly optimizes non–coherent
Grassmann constellations, trellis coding, and network coding
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Fig. 2. End–to–end BER versus average SNR for bidirectional MIMO
relaying systems in frequency–flat Rayleigh fading (fDTs = 1/200).

for bidirectional MIMO relaying systems in which CSI is
not available at either transmitter or receiver. We optimized
the blind NetTCM to minimize the pairwise error probabil-
ity through the use of the gradient method as a practical
sphere packing over the Grassmannian manifold. In addition,
we introduced an affine–lattice convolution with exponential
mapping to improve the convergence speed of the gradient
method. It was demonstrated that the designed NetTCM offers
a significant performance improvement over the conventional
schemes for non–CSIR scenarios.
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