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Abstract

We consider the problem of extracting a wide-band channel model when only measurements
in parts of this band are available, specifically in disjoint frequency sub-bands. Conventional
channel modeling techniques cannot model at all those parts of the band where no sounding
signals are available; or, if they use conventional interpolation, suffer from poor performance. To
circumvent this obstacle, we develop in this paper a three-step super-resolution blind algorithm.
First, the path delays are estimated by exploiting super-resolution algorithms such as MUSIC
or ESPRIT based on the transfer function of each sub-band, separately. Exploiting such a set
of delay estimates, the proposed algorithm performs blind (i.e., without training signal) channel
estimation over the unmeasured sub-bands, and subsequently derives the frequency response over
the whole wide-band channel. Finally, estimates derived from different sub-bands are combined
via a soft combining technique. Computer simulations show that the proposed super-resolution
blind algorithm can achieve a significant performance gain over conventional methods.
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Abstract—We consider the problem of extracting a wide-
band channel model when only measurements in parts of this
band are available, specifically in disjoint frequency subbands.
Conventional channel modeling techniques cannot model at
all those parts of the band where no sounding signals are
available; or, if they use conventional interpolation, suffer from
poor performance. To circumvent this obstacle, we develop in
this paper a three-step super-resolution blind algorithm. First,
the path delays are estimated by exploiting super-resolution
algorithms such as MUSIC or ESPRIT based on the transfer
function of each subband, separately. Exploiting such a set of
delay estimates, the proposed algorithm performs blind (i.e.,
without training signal) channel estimation over the unmeasured
subbands, and subsequently derives the frequency response over
the whole wideband channel. Finally, estimates derived from
different subbands are combined via a soft combining technique.
Computer simulations show that the proposed super-resolution
blind algorithm can achieve a significant performance gain over
conventional methods.

Index Terms—Super-resolution channel modeling, blind chan-
nel estimation, soft combining.

I. INTRODUCTION

Accurate characterization of wireless propagation channels
plays a critical role in designing high-performance wireless
systems. As demonstrated in Shannon’s seminal work, the
fundamental performance limits of wireless transmission are
dictated by the wireless channel characteristics. Hence, an in-
depth understanding of the underlying channel can facilitate
system architects to design, optimize and subsequently analyze
practical wireless systems [1], [2].

For the purpose of system development, channel models
based on measurements are essential. Conventionally, channel
measurements are conducted by sending and measuring sound-
ing signals over the whole frequency band of interest. How-
ever, there are often challenging situations in which sounding
signals can be transmitted only over some parts of the fre-
quency band of interest, rather than the whole band. Such
challenges arise in a number of practical situations including
regulatory restrictions, measurements with interference and re-
use of narrowband measurements.

First of all, as existing (legacy) wireless services such as
analog TV broadcasting are eliminated or relocated from par-
ticular frequency bands, the freed-up bands may be re-grouped
to provide various broadband services. Thus, channel models
for these wideband channels are required to develop future
applications even before the legacy services are terminated.
However, measurements of the channel characteristics can only

be performed in the “whitespace” between the existing chan-
nels while the legacy services are still operating. Secondly,
for many measurements, it is impossible to guarantee absence
of interference over the whole desired bandwidth, which is
particularly true for ISM (Industrial, Scientific, and Medical)
bands due to their license-free operation. Traditionally, all
measurements contaminated by interference have to be dis-
carded, despite the fact that the bandwidth of the interference
is often smaller than the measurement bandwidth. Given the
high cost incurred during channel measurements, it is thus
highly desirable if channel models can be directly derived from
the interference-free measurements over some parts of the
desired frequency band. Thirdly, each generation of wireless
data system occupies more bandwidth than the previous one,
and needs therefore more broadband channel models. While
such broadband channel models can be derived through new
measurement campaigns, the enormous efforts incurred make
it worthwhile to investigate whether or not existing narrow-
band measurements in adjacent frequency bands can be re-
used.

Thus motivated, a natural question to ask is whether it is
feasible to measure a wideband wireless channel by sending
only narrowband sounding signals. In this work, we demon-
strate that this task can be successfully achieved. Taking
advantage of the proposed super-resolution blind algorithm,
we show that a wideband wireless channel can be accurately
measured and modeled using narrowband sounding signals
transmitted in disjoint subbands. More specifically, by exploit-
ing a parametric channel model to extract channel information
such as multipath component (MPC) delays and amplitudes,
we propose to estimate the channel transfer function that is
valid over a larger bandwidth than the original measurements.
Furthermore, since this estimation can be performed in each
separate subband, estimations derived from different subbands
are then weighted and combined for channel model extraction.

The main contributions of this paper are as follows: we
present the (to the best of our knowledge) first algorithm
that obtains consistent channel measurements from measure-
ments in disjoint subbands (separated by more than a co-
herence bandwidth of the channel). Furthermore, this work
explicitly incorporates the effects of practical pulse shaping
filters (raised-cosine filters) into the high-resolution algorithms
such as multiple signal classification (MUSIC) algorithm or
frequency-domain Estimation of Signal Parameters via Ro-
tational Invariance Technique (ESPRIT), which distinguishes
this work from other applications of these high-resolution
algorithms for channel estimation such as [3], [4]. Finally,
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Fig. 1. Block diagram of the measurement system under consideration.

unlike [3], [4] that solely concentrate on path delay extraction,
our work further characterizes the MPC amplitudes and subse-
quently the channel transfer function over a larger bandwidth.

Notation: Vectors and matrices are denoted by boldface
letters. (·)†, (·)T and (·)H stand for the Moore-Penrose pseu-
doinverse, transpose operation and Hermitian transposition, re-
spectively. |·| denotes the amplitude of the enclosed complex-
valued quantity while bxc is the maximum integer less than
x. Furthermore, [A]i,j denotes the i-th row and j-th column
entry of matrix A whereas A(q, :) the q-th column of matrix
A. Finally, IN is the N ×N identity matrix while FN is the
N -point discrete Fourier transform (DFT) matrix with entries
[F ]n,k = 1√

N
exp

(
−j2πnk

N

)
for 0 ≤ n, k ≤ N − 1.

II. SIGNAL MODEL

We consider a channel measurement system shown in Fig. 1.
The system consists of K disjoint narrowband subbands
separated by guard bands (also referred to as the blind regions).
Fig. 2 illustrates a particular case with K = 2 subbands. Note
that the bandwidth of each subband or guard band can differ.

Freq. (Hz)

Channel response?

SIG2SIG1
Blind

Region

1f 2f

Fig. 2. Illustration of measurement channel for K = 2.

As shown in Fig. 1, a sounding signal comprised of G
repeated pseudo-noise (PN) sequences is first up-sampled
before being fed into a pulse shaping filter hT (t) such as a
square-root raised cosine filter. After that, the pulsed-shaped
signal is up-converted to fk and transmitted through the k-th
subband. As a result, the transmit signal s(t) is a superposition
of multiple narrowband sounding signals residing in different
subbands.

We consider a frequency-selective channel comprised of L
discrete MPCs (see Sec. V for a discussion of this assumption).

Thus, the channel impulse response can be expressed as

h(t) =

L∑

`=1

α` · δ(t− τ`), (1)

where δ(·) is the delta function while α` and τ` are the
path gain and delay of the `-th MPC, respectively. Note
that we have implicitly assumed that the channel remains
approximately static over the G PN sequences. The receiver
obtains r(t), the convolution of the transmit signal s(t) with
this complex channel impulse response h(t), plus additive
white Gaussian noise w(t) that is modeled as a circularly
symmetric complex Gaussian variable with standard deviation
σ.

Upon receiving r(t), the receiver first down-converts the
received signal into each subband followed by matched fil-
tering the down-converted signals with hR(t). The resulting
k-th subband output is y(k)(t), for k = 1, 2, · · · ,K. Denote
by H(f) the frequency response of h(t). Clearly, a straight-
forward least-squared (LS) estimate of H(f) can be derived
as follows.

Ĥ(f) =
R(f)

S(f)
, (2)

where R(f) and S(f) are the Fourier transforms of r(t) and
s(t), respectively. However, as shown in the later simulation,
since S(f) ≈ 0 over the blind region, the estimate Ĥ(f)
derived from (2) will incur substantial estimation errors over
the blind region. Note that this conventional method can
be slightly improved by linear (or other) interpolation-based
techniques between the measured subchannels. However, the
improvement is minor if the width of the blind region is larger
than the coherence bandwidth of the channel. In the sequel,
the method shown in (2) is referred to as the conventional
method.

In the next section, we will propose a super-resolution
blind algorithm to derive the channel frequency response
H(f) by exploiting sounding signals in disjoint subbands.
For presentational clarity, we will concentrate on the case of
K = 2 as illustrated in Fig. 2 in the sequel. However, it should
be emphasized that the following discussion can be extended
to K > 2 in a straightforward manner.
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III. PROPOSED ALGORITHM
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Fig. 3. Block diagram of the proposed super-resolution blind channel
modeling algorithm

Fig. 3 illustrates the block diagram of the proposed super-
resolution blind channel modeling algorithm.

A. Step One: Super-resolution delay estimation
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Fig. 4. Super-resolution delay estimation by exploiting y(k)(t).

In the first step, super-resolution delay estimation is per-
formed by exploiting either delay-domain MUSIC [3] or
frequency-domain ESPRIT [4]. Denote by Tc and U the PN
sequence chip duration and the number of chips per PN
sequence, respectively. In contrast to the conventional PN
correlation method in which the resolution of path delay esti-
mation is limited by Tc, the super-resolution delay estimation
proposed in [3], [4] can provide estimates of resolution of a
fraction of Tc. In particular, the ESPRIT algorithm is more
computationally advantageous than MUSIC since it does not
require exhaustive search [4].

Next, we propose an improved ESPRIT algorithm based on
[4]. Two key differences distinguish the improved algorithm
from [4]: (1) we need to take the pulse shaping into account;
(2) rather than directly applying ESPRIT to the received signal
as proposed in [4], we consider applying the ESPRIT algo-
rithm after correlating the received signal with the transmitted
PN sequence. Let y(k)(t) and τ -delayed x(t) denote first D-
time oversampled at fs = 1/(DTc) as shown in Fig. 4. Then,
y(k)[n] is correlated with xτ [n] and summed over one PN
sequence. The resulting z(k)(τ) takes the following form

z(k)(τ) =

L∑

`=1

α` · e−j2πτ`fk · v(τ) + ψ(k)(τ), (3)

where v(τ) is the autocorrelation function of the pulse-shaped
PN sequence and ψ(k)(τ) is the additive noise after correlation.
Fig. 5 illustrates the function v(τ) for raised cosine pulse-
shaped PN sequences with different values of rolloff factor β.
It is interesting to observe from Fig. 5 that the autocorrelation
function associated with a smaller β entails larger ripples

outside [−1,+1] as compared to the ideal autocorrelation func-
tion. In other words, a smaller rolloff factor results in better
band-limiting performance at the cost of more interference for
super-resolution delay estimation.
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Fig. 5. Autocorrelation functions of raised cosine pulse-shaped PN sequence
with different values of rolloff factor β.

Then, we convert z(k)(τ) into the frequency domain before
performing the frequency ESPRIT as follows. After deconvo-
lution, we have

J (k)(f) =
Z(k)(f)

V (f)
=

L∑

`=1

α` · e−j2πτ`fk + Ξ(k)(f), (4)

where Ξ(k)(f) = Ψ(k)(f)
V (f) with Z(k)(f), V (f) and Ψ(k)(f)

being the Fourier transforms of z(k)(τ), v(τ) and ψ(k)(τ),
respectively. N samples of J (k)(f) are taken from its main
lobe at f = 0,∆, 2∆, · · · , (N −1)∆. It can be shown that the
noise correlation matrix is given by

[RΞ(k) ]p,q =
σ2 · FN (p, :) ·R0 · FH

N (q, :)

|V (p∆)|2 , (5)

where 0 ≤ p, q ≤ N − 1 and R0 is the pulse-shaped noise
covariance matrix with [R0]p,q = v(τp − τq). Substituting (5)
into the frequency-domain ESPRIT algorithm in [4], we can
extract super-resolution estimates of path delays denoted by
by

{
τ̂
(k)
q

}
, where q = 1, 2, · · · , Q with Q ≥ L.

B. Step Two: Blind channel estimation

Upon attaining
{
τ̂
(k)
q

}
, two approaches can be utilized

to derive the MPC amplitudes and thus the channel im-
pulse response, namely delay-domain and frequency-domain
approaches. In the delay-domain approach, we first collect
I samples at the correlator output before forming a vector
z(k) =

[
z(k)(T1) z(k)(T2) . . . z(k)(TI)

]T
. From (3),

it is straightforward to show that z(k) can be rewritten in the
following matrix form:

z(k) = B (τ ) ·α+Ψ(k), (6)

where α =
[
α1 α2 . . . αL

]T
, B (τ ) =[

v(τ1) v(τ2) . . .v(τL)
]

and v(τ`) =[
v(T1 − τ`) v(T2 − τ`) . . . v(TI − τ`)

]T .
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As a result, the LS estimate of α can be derived as

α̂ = [B (τ̂ )]
†
z(k). (7)

However, one possible drawback associated with the delay-
domain approach is that the channel frequency response de-
rived from (7) may exhibit large deviation from that estimated
in (2) over the k-th subband.

Thus motivated, we next discuss the frequency-domain
approach that extracts the channel amplitudes by exploiting
the estimates derived from (2). This approach is shown to pro-
vide more accurate frequency response estimation over each
measurement subband. We first define the channel impulse
response vector as hN = [h0, h1, · · · , hN−1]

T where only L
elements are non-zero. In the following, we exploit the fact
that

H(f) = FN · hN = FN · T · h′
L, (8)

where h′
L contains only the L non-zero elements of hN and

T is an N × L matrix whose `-th column is the bfsτ`c-th
column of IN . Thus, FN ·T is a sub-matrix of FN with only
the corresponding columns. Since {τ`} is not available, we
replace {τ`} with

{
τ̂
(k)
q

}
and (8) becomes

Ĥ(k)(f) = FN · T (k) · h′(k)
Q + η, (9)

where η is the additive noise and T (k) is an N × Q matrix
whose q-th column is the bfsτ̂ (k)q c-th column of IN . Thus, we
have

ĥ
′(k)
Q =

[
FN · T (k)

]†
Ĥ(k)(f). (10)

However, recall that estimates of Ĥ(k)(f) derived from (2)
are reliable only over the k-th subband. Thus, in (10), we
should take M (k) > Q samples of Ĥ(k)(f) only over the k-
th subband derived from (2). Finally, substitution of ĥ′(k)

Q into
(9) results in Ĥ(k)(f) over the whole channel bandwidth.

C. Step Three: Soft combining
The last step is to combine Ĥ(k), k = 1, 2, to provide an

accurate channel estimate over the whole wideband channel.
Clearly, the resulting estimate has to satisfy at least the
following two requirements. First of all, the combined estimate
should render a continuous frequency response over the whole
channel. Second, the combined estimate should provide good
estimates over the blind regions as well as the measurement
subbands. A soft-combining approach can be established as
follows:

Ĥ(f) =

K∑

k=1

ρk(f) · Ĥ(k)(f), (11)

where ρk(f) ≥ 0 are the weighting coefficients at frequency
f with

∑
ρ2k(f) = 1. It is easy to see that {ρk(f)} should be

designed to accurately reflect the reliability of Ĥ(k)(f). Note
that Ĥ(k)(f) becomes less reliable as f falls far from the k-th
subband. Inspired by this observation, a simple but effective
design example of {ρk(f)} is shown in Fig. 6 where ρk(f)
remains unity over the k-th subband and linearly decreases to
zero over the blind region. Alternative combination methods
that aim to minimize the mean-square error of the estimate at
each frequency will be described in our future works.
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SIG2SIG1 Blind

Region

1f 2f

1

0

Fig. 6. Examples of weighting coefficients employed for soft combining.

IV. SIMULATION RESULTS

In this section, simulation results are shown to demonstrate
the performance of the proposed super-resolution blind algo-
rithm. As shown in Fig. 1, we simulate a system of K = 2
equal-bandwidth subbands with f1 = 0 Hz and f2 = 2
Hz, i.e. both subbands and their guard band have bandwidth
of 1 Hz. The received signal is 8-time oversampled. Thus,
the subband #1, subband #2 and the blind region reside
in the following normalized frequency band (with respect
to the sampling frequency),

[− 1
16 ,+

1
16

]
,
[
+ 1

16 ,+
3
16

]
and[

+ 3
16 ,+

5
16

]
, respectively. Unless otherwise specified, raised

cosine pulse shaping with β = 0.5 is employed in the
following simulation. Furthermore, for illustration purposes, a
frequency-selective complex fading channel with L = 5 paths
is simulated. The path delays normalized with respect to Tc are
set to τ = {1.0, 1.6, 2.4, 3.1, 4.0} whereas the path gains are
randomly generated in each simulation run with path power of
{0, 0, 0,−3,−3} dB. It is worth noting that the conventional
correlation-based delay estimation approach will fail under this
simulation setup since there are MPCs separated by less than
one Tc.

Fig. 7 depicts the estimated channel frequency response
obtained with the conventional method as shown in (2).
Inspection of Fig. 7 suggests that the conventional method
incurs substantial estimation errors over the blind region as
well as the edges of the signal subbands due to raised cosine
pulse shaping. Indeed, the peak shown in the blind region is
always present, regardless of the underlying channel model.
This is because that the peak is induced by S(f) ≈ 0 in (2)
over the blind region.
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Fig. 7. Performance of the conventional channel estimation method.
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Fig. 8 shows the estimated Ĥ(2) using the sounding signal
in subband #2. While Fig. 8 shows improved estimates
of Ĥ(2) over the blind region as compared to Fig. 7, the
estimation performance degrades rapidly beyond subband #2.
Similar observation can be also obtained from the estimated
Ĥ(1) derived from subband #1.
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Fig. 8. Performance of the proposed super-resolution blind algorithm by
exploiting received signal from subband #2.

Next, Fig. 9 shows the estimated Ĥ by combining Ĥ(1)

and Ĥ(2) using the weighting coefficients shown in Fig. 6.
Compared to Fig. 8, Fig. 9 indicates that the proposed super-
resolution blind algorithm can provide balanced good perfor-
mance over both measurement subbands and the blind region.
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Fig. 9. Performance of the proposed super-resolution blind algorithm after
combining both two subbands.

Finally, Fig. 10 shows the performance of the conven-
tional method and the proposed super-resolution blind channel
modeling algorithm in terms of relative mean squared error
(RMSE) over the blind region as a function of signal-to-
noise ratio (SNR) defined as 1/σ2. More specifically, we

define RMSE = E

{ |Ĥ−H|2
|H|2

}
. The results are averages

over 1000 runs. Fig. 10 shows that the proposed algorithm
substantially outperforms the conventional method. This can
be explained by the fact that the conventional method always
estimates a peak over the blind region, regardless of the

actual channel. However, it is very likely that null channel
responses exist over the blind region. As a result, the RMSE
of the conventional method is dominated by large errors due
to error magnifications over the null responses by dividing
zero. Furthermore, we can observe that the performance of
the proposed algorithm is insensitive to SNRs.
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Fig. 10. RMSE as a function of SNR over time-invariant multipath fading
channels.

V. CONCLUDING REMARKS

In this paper, we have presented a method for reconstructing
propagation channels from measurements in disjoint subbands
of the band of interest. By using high-resolution estimation
of the multipath parameters, and suitable combining of the
results, we arrived at a model that accurately interpolates be-
tween the measured subbands. The methodology was verified
by means of a synthetic channel model, where the “correct”
description was exactly known.

There are several extensions of this study that can be further
explored. One fundamental assumption in this work is the va-
lidity of the tapped-delay-line representation shown in (1) with
a finite number of taps. Therefore, for channels of very large
bandwidth and/or diffuse MPCs, it is important to develop
effective means to confirm the validity of this assumption
before applying the proposed algorithm [5]. Furthermore, the
performance of the proposed algorithm hinges on the accuracy
of super-resolution delay estimation. Thus, it deserves further
investigation on improving the delay estimation accuracy.
Finally, tracking the estimated channel model over time may
help identify and remove channel modeling artifacts due to
estimation errors.

REFERENCES

[1] M. Ibnkahla (ed.), Digital Signal Processing for Wireless Communications
Handbook. CRC Press, 2004.

[2] A. Molisch, M. Shafi, and L. J. Greenstein, “Propagation issues for
cognitive radio,” Proceedings of the IEEE, vol. 97, pp. 787–804, March
2009.

[3] T. Manabe and H. Takai, “Superresolution of multipath delay profiles
measured by PN correlation method,” IEEE Trans. on Antennas and
Propagation, vol. 40, pp. 500–509, May 1992.

[4] H. Saarnisaari, “TLS-ESPRIT in a time delay estimation,” in Proc. IEEE
47th Vehicular Technology Conference, Phoenix, AZ, May 1997.

[5] P. A. Bello, “Characterisation of randomly time-variant linear channels,”
IEEE Trans. Commun. Systems, vol. CS-11, pp. 360–393, Dec. 1963.

5


	Title Page
	Title Page
	page 2


	Super-Resolution Blind Channel Modeling
	page 2
	page 3
	page 4
	page 5


