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Abstract

We investigate non-coherent multi-input multi-output (MIMO) signal processing which requires
no channel state information (CSI) at either the transmitter or the receiver. With non-coherent
codes on Grassmann manifold, a receiver employing generalized likelihood ratio test (GLRT)
algorithm offers the maximum-likelihood performance even without CSI. However, the con-
ventional GLRT suffers from a severe performance degradation when the channel changes fast
within a coding block duration.We propose an improved GLRT algorithm referred to as high-
order super-block techniques. The super-block scheme makes effective use of correlated chan-
nels for adjacent blocks in slow fading, whereas the high-order scheme can overcome the channel
fluctuation during a block in fast fading. We demonstrate that the proposed scheme significantly
improves performance for MIMO-OFDM with non-coherent Grassmann space-frequency block
codes (SFBC).
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Abstract—We investigate non–coherent multi–input multi–
output (MIMO) signal processing which requires no channel
state information (CSI) at either the transmitter or the receiver.
With non–coherent codes on Grassmann manifold, a receiver
employing generalized likelihood ratio test (GLRT) algorithm
offers the maximum–likelihood performance even without CSI.
However, the conventional GLRT suffers from a severe per-
formance degradation when the channel changes fast within a
coding block duration. We propose an improved GLRT algorithm
referred to as high–order super–block techniques. The super–
block scheme makes effective use of correlated channels for
adjacent blocks in slow fading, whereas the high–order scheme
can overcome the channel fluctuation during a block in fast
fading. We demonstrate that the proposed scheme significantly
improves performance for MIMO–OFDM with non–coherent
Grassmann space–frequency block codes (SFBC).

I. INTRODUCTION

A large number of studies in the past dozen years have
proven that the use of multiple antennas at both transmitter
and receiver, the technique of which is known as multi–input
multi–output (MIMO) systems, can dramatically increase data
throughput. In rich–scattering channel environments, the link
capacity increases linearly with min(M,N) [1, 2], where M
and N denote the number of transmitting antennas and that of
receiving antennas, respectively. However, an accurate channel
state information (CSI) is required for achieving such capacity
gains.

Without CSI, we require non–coherent communications.
Some information–theoretical works [3, 4] have verified that
the non–coherent channel capacity becomes a function of
M ′(1−M ′/L) in high signal–to–noise ratio (SNR) regimes,
where M ′ = min(M,N, �L/2�) and L denotes the length of
non–coherent codes with �x� being the floor function. Those
theoretical studies have motivated several works on signal
design of non–coherent codes, which include unitary space–
time constellations [5–7], exponential mapping Grassmann
codes [8, 9], non–parametric Grassmann codes [10, 11], and
differential space–time modulations [12, 13].

Marzetta and Hochwald showed in [3] that unitary space–
time codes asymptotically achieve the non–coherent channel
capacity for high SNRs. For such codes, the optimal perfor-
mance of maximum–likelihood decoding can be offered by
a generalized likelihood ratio test (GLRT) [14] even without
CSI. The key idea behind the GLRT receiver lies in the fact

that it employs implicit channel estimation for each codeword
of the non–coherent codes at the time of decoding. However,
the performance of the conventional GLRT receiver seriously
degrades when the channel coherence length (in time or
frequency domain) is shorter than the length of non–coherent
codes L. To prevent such a performance degradation, the
code length should be reasonably short in practice. Shorter
space–time codes in turn decrease the capacity gains of
M ′(1−M ′/L). In this paper, we propose an improved GLRT
receiver in order to deal with the above–mentioned tradeoff
between performance and the code length for any arbitrary
channel coherence length.

The proposed GLRT incorporates two novel ideas; i) super–
block scheme, which can improve performance for short code
lengths in slow fading channels by considering consecutive
coded blocks as one extended coding block, and ii) high–order
scheme, which can overcome the performance degradation in
rapidly varying fading channels over a code block duration by
adopting high–order least–squares (LS) regressions. For the
super–block GLRT, we further propose an improved decoding
algorithm referred to as sequential decision which is based on
the Viterbi algorithm to efficiently decode consecutive space–
time block codes. In this paper, we demonstrate that our
proposed scheme offers a significant improvement in error rate
performance for non–coherent MIMO–OFDM systems.

Notations: Throughout the paper, we describe matrices and
vectors by bold–face italic letters in capital cases and small
cases, respectively. Let X ∈ C

m×n be a complex–valued
(m × n)–dimensional matrix, where C denotes the complex
field. The notations X∗, XT, X†, X−1, tr[X] and ‖X‖
represent the complex conjugate, the transpose, the Hermite
transpose, the inverse, the trace and the Frobenius norm of X ,
respectively. The operator vec[·] denotes the vector–operation
which stacks all columns of a matrix into a single column
vector in a left–to–right fashion, and the operator ⊗ stands
for the Kronecker product of two matrices. The set of real
numbers is denoted by R, and Im ∈ R

m×m denotes an m–
dimensional identity matrix.

II. NON–COHERENT MIMO SIGNAL PROCESSING

A. Non–Coherent MIMO–OFDM Systems

We consider M × N MIMO–OFDM systems in which
M transmitting antennas and N receiving antennas are used.
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We focus on non–coherent communications where both the
transmitter and the receiver do not have any CSI. The use
of non–coherent codes [5–13] enables us to communicate
efficiently without pilot or training sequences for channel
estimations.

Let xn ∈ C
M×1 be the signal vector transmitted

from M antennas at the n–th subcarrier. We assume L–
symbol block of one codeword. Each block consists of
X = [x1,x2, . . . ,xL] ∈ X ⊂ C

M×L, where X =
{X 1,X 2, . . . ,X Q} denotes a non–coherent space–frequency
codebook with Q distinct codewords. The mean energy of
the codeword per transmit antenna is normalized, namely
(1/QM)

∑Q
q=1 ‖X q‖2 = 1.

Over MIMO channels, the received signal is written as

yn = Hnxn + wn, (1)

where yn ∈ C
N×1, Hn ∈ C

N×M and wn ∈ C
N×1 denote

the received signals vector, the (frequency–domain) MIMO
channel matrix and the additive noise, respectively, at the
n–th subcarrier. In order to describe the conventional GLRT
receiver [14], we first assume that the MIMO channel matrix
remains constant such that Hn = H during a single block
for n = 1, 2, . . . , L (this assumption will be relaxed later
when we introduce a high–order scheme to deal with channel
fluctuations over a block length). This assumption of block
fading channels simplifies the expression of the received signal
into a matrix form as follows:

Y = HX + W , (2)

where Y and W denote the received signals and the additive
noise signals over the code block:

Y = [y1,y2, . . . ,yL] ∈ C
N×L, (3)

W = [w1,w2, . . . ,wL] ∈ C
N×L. (4)

We suppose that the noise is white Gaussian random variables:
E[vec[W ]vec[W ]†] = σ2INL. Note that it is straightforward
to consider a colored noise as discussed in [11].

B. Generalized Likelihood Ratio Test (GLRT) Receiver

The conditional probability of Y given X and H is known
as the likelihood which is expressed as

Pr(Y |X,H) =
1

(πσ2)NL
exp

(
− 1

σ2
‖Y −HX‖2

)
.

Without CSI, the GLRT receiver [14] searches for the best
estimate X̂ from the codebook X in favor of maximizing the
likelihood, or equivalently minimizing the squared distance
metric as follows:

X̂ = arg min
X∈X

inf
H
‖Y −HX‖2 . (5)

Note that since H is not known at the receiver, the GLRT
uses the best channel matrix over all the possible realizations
for each codewords.

Since we have
∂

∂H∗ ‖Y −HX‖2 = − (Y −HX) X†, (6)

the channel candidate Ĥ = Y X†(XX†)−1 can maximize
the likelihood, where we assume XX† is invertible. This
is equivalent to the well–known lest–squares (LS) channel
estimation given a codeword candidate X . Substituting Ĥ for
H in (5) yields

X̂ = arg min
X∈X

∥∥∥Y
(
IL −X†(XX†)−1X

)
︸ ︷︷ ︸

P

∥∥∥2

. (7)

If every codeword is orthonormal such that X qX †
q = IM for

any q = 1, 2, . . . , Q, the GLRT metric can be further simplified
to max ‖Y X†‖2.

Here, a matrix P ∈ P ⊂ C
L×L denotes an idempotent

projector onto the orthogonal complement of a codeword X;
i.e., XP = 0 and PP = P . The set P = {P1,P2, . . . ,PQ}
is a projector bank, whose q–th member is defined as Pq =
IL − X †

q(X qX †
q)

−1X q, for the codebook X. It should be
noted that the minimum size of the possible projector matrix P
such that XP = 0 can be L×(L−M) because the orthogonal
complement of X is of size L× (L−M). More importantly,
given a codebook X, the projector bank P is determined in
advance.

C. Non–Coherent Grassmann Codes

A number of non–coherent codes have been reported, e.g.,
unitary space–time codes [5–7, 13], Grassmann codes with
exponential mapping [8, 9], Grassmann packing codes with
numerical optimization [10, 11], and differential modulations
[12]. Here, we describe a non–coherent Grassmann code based
on the exponential mapping design presented in [8, 9]. The
exponential mapping technique enables us to design a good
non–coherent codes from coherent codes in a straightforward
manner while the full–rate and full–diversity gains hold.

Grassmann codes parameterized by the exponential mapping
technique are written as

X =
[
IM 0M×(L−M)

]
exp

([
0M B

−B† 0L−M

])
,

The matrix B ∈ C
M×(L−M) denotes a full–rate full–diversity

coherent space–time block code. Let B = UAV † be the
singular value decomposition (SVD) where U ∈ C

M×M

and V ∈ C
(L−M)×(L−M) are unitary matrices and A ∈

C
M×(L−M) is a diagonal matrix. The cosine–sine decompo-

sition yields

X =
[
U cos(αA)U † U sin(αA)V †] , (8)

where α is a parameter which controls the codeword distance.
Such a codeword always satisfies the orthonormal condition,
XX† = IM , for any arbitrary α and B.

For M = 2 and L = 4, one choice of the coherent coding
matrix B suggested in [8, 9] is

B =
1√
2

[
s1 + φs2 ϑ(s3 + φs4)

ϑ(s3 − φs4) s1 − φs2

]
, (9)
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where ϑ2 = φ = exp(jπ/4). The optimal α, in this case, is
approximately 0.566. Each si is drawn from 4QAM constel-
lations for a spectral efficiency of 2 bps per channel use. In
[8, 9], it has been shown that this Grassmann code offers the
maximum degrees of freedom (multiplexing gain) for non–
coherent communications. However, it is not obvious whether
such a coherent coding matrix B with the parameters ϑ and
φ provides the best sphere packing performance over the
Grassmann manifold. We will later present better Grassmann
codes with parameters optimized by a gradient method.

III. HIGH–ORDER SUPER–BLOCK GLRT

A. Super–Block GLRT

The length of the non–coherent codes L should be shorter
than the coherence bandwidth in principle. However, shorter
space–frequency codes have a poor performance with the
conventional GLRT receiver. It is because the accuracy of the
LS channel regressions decreases linearly with the code length
L. Even for highly selective fading channels (in frequency–
domain for SFBC), the channel matrix has a high correlation
for adjacent blocks in general. It suggests that we can enjoy a
performance gain through the use of channel correlations when
we increase the effective block length by coupling multiple
blocks at receivers.

We propose super–block GLRT receiver, which jointly
estimates K adjacent blocks. Let Xk and Y k be the trans-
mission block and the received block at the k–th block for
k ∈ {1, 2, . . . ,K}. When we write a super–block received
signal and a super–block transmitted signal as

Y ′ = [Y 1,Y 2, . . . ,Y K ] ∈ C
N×LK , (10)

X ′ = [X1,X2, . . . ,XK ] ∈ C
M×LK , (11)

we can use the GLRT receiver if the channel remains constant
over these K blocks. Here, the signal X ′ is a new virtual
codebook generated from the original codebook Xk ∈ X.
The corresponding projector matrix P ′, as in (7), can be
computed in advance such that X ′P ′ = 0. Note that the
computational complexity increases exponentially with the
number of blocks, K, because the cardinality of a super–block
codebook becomes Q′ = QK . If we use orthonormal codes,
the GLRT metric reduces to max ‖∑K

k=1 Y kX†
k‖2.

B. Sequential Decision for Super–Block GLRT

Since the super–block GLRT treats multiple blocks at the
same time, some different decision criteria arise as follows.
Let μj =

∥∥[Y j+1,Y j+2, . . . ,Y j+K

]
P ′∥∥2

be the metric of
the super–block GLRT for K consecutive blocks from Xj+1

to Xj+K .

• One–time decision: use only the metric μ�k/K�−1.
• Selective decision: select the best metric out of the

adjacent metrics from μk−K+1 to μk+K−1.
• Combined decision: use the combined metric which is

summed up all the metrics from μk−K+1 to μk+K−1.
• Sequential decision: select the best metrics all over the

blocks by using Viterbi algorithm. The previous K − 1

blocks are interpreted as trellis states. Along the trellis–
state diagram, optimal decision can be obtained.

Obviously, sequential decision has the highest complexity
while achieving the best performance.

C. High–Order Super–Block GLRT

The GLRT receiver in principle requires an assumption that
the channel remains static during a super block (or, consecutive
LK symbols). Hence, a channel fluctuation during a super
block may incur a severe performance degradation. Here, we
propose an improved GLRT which uses high–order LS channel
estimation [15] in order to overcome the channel variation
during the block. Let us use the D–th order polynomial curves
to fit the channel fluctuation for high–order LS regressions.
The channel matrix at the n–th subcarrier is then modeled as
follows:

Hn =
D∑

d=0

H [d]nd = HDn, (12)

where

H = [H [0],H [1], . . . ,H [D]] ∈ C
N×M(D+1), (13)

Dn = [n0IM , n1IM , . . . , nDIM ]T ∈ R
M(D+1)×M . (14)

The matrix H [d] denotes the channel matrix at the d–th
order term of the polynomial for d ∈ {0, 1, . . . ,D}. This
model enables us to adopt the GLRT receiver even when Hn

is changing in the frequency domain because the expanded
channel matrix H remains static.

The received signal can be rewritten as

Y ′ = H DΓ︸︷︷︸
X′

+W , (15)

where D is the (deterministic) order expansion matrix and
Γ is the diagonally aligned version of the transmitted signal
matrix X , each of which is defined as

D = [D1,D2, . . . ,DLK ] ∈ R
M(D+1)×MLK , (16)

Γ =

⎡
⎢⎢⎢⎣

x1

x2

. . .
xLK

⎤
⎥⎥⎥⎦ ∈ C

MLK×LK . (17)

By considering X ′ = DΓ ∈ C
M(D+1)×LK as a new virtual

codeword, the associated projector matrix becomes

P ′ = ILK − Γ †D†(DΓΓ †D†)−1DΓ ∈ C
LK×LK , (18)

which can be computed in advance for any D and for all
codewords.

It should be noted that the computational complexity of the
high–oder GLRT is independent of the order D because the
size of predetermined projector matrix P ′ does not increase.
There is a constraint on the maximum available order D;
more specifically, M(D + 1) < LK must be fulfilled because
M(D + 1) > LK results in rank deficiency of the term
DΓΓ †D†. This drawback can be dealt with by increasing the
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super–block length K. Obviously, higher–order modelling is
advantageous only if the channel response frequently changes
during a super block.

IV. CODEBOOK OPTIMIZATION OF NON–COHERENT

GRASSMANN CODES

In this section, we optimize non–coherent codes numerically
in a similar way of [11]. The optimization of non–coherent
codes is done by sphere packing on the Grassmann manifold.
For numerical Grassmann packing, we adopt the gradient
method to minimize the pairwise error probability between
two codewords in high SNR regimes.

A. Design Criterion: Pairwise Error Probability

As shown in [11], we can write the pairwise error probabil-
ity (between the correct codeword X i and the wrong codeword
X j) given a channel matrix H as

Pr(X i → X j |H) = Pr(‖Y Pj‖2 < ‖Y Pi‖2 |H)


 Pr(‖HX iPj‖2 + 2�[tr[HX iPjW
†]] < 0 |H)

=
1
2
erfc

(√
‖HX iPj‖2

4σ2

)
≤ 1

2
erfc

⎛
⎝
√
‖H‖2λmin(X iPjX †

i )
4σ2

⎞
⎠,

in the high SNR regimes, where erfc(·) is the complementary
error function, and λmin(·) denotes the minimum eigenvalue
of a matrix.

Our goal is to design a codebook X which maximizes
λmin(X iPjX †

i ) for any possible pair i =j. In [11], a semi–
definite programming (SDP) relaxation method is used for
optimization with an energy constraint. The codebook obtained
by SDP is further refined by a linear programming method.
In this paper, we optimize the codebook for the high–order
super–block GLRT by the gradient method as this is a lower–
complexity approach.

B. Gradient Method

For given Ωi,j = X iPjX †
i , the eigenvector ui,j associated

with the minimum eigenvalue, λi,j = λmin(Ωi,j), can yield
the gradient in terms of X m as follows

∇[m]
λi,j

=
∂λi,j

∂X ∗
m

=
∂

∂X ∗
m

u†
i,jΩi,jui,j

= ui,ju
†
i,jX iPjδi,m

− (X jX †
j

)−1X jX †
iui,ju

†
i,jX iPjδj,m. (19)

Here, δi,j = 1 if i = j, otherwise δi,j = 0. The code-
book design using the gradient method is described be-
low:

1: Generate random codewords X m such that ‖X m‖2 = M
2: Compute Ωi,j to get minimum eigenvalue λi,j =

λmin(Ωi,j) for all pairs i =j
3: Search for the worst pair which has the minimum λi,j

4: Compute the eigenvalue ui,j for the worst pair (i, j)
5: Calculate the gradient ∇[m]

λi,j
for the pair m ∈ {i, j}

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20  25  30  35

S
E

R

SNR (dB)

Non-Coherent Grassmann Code

Conventional Code (16)
Optimized Code (16)

Conventional Code (256)
Optimized Code (256)

M = 2, L = 4

Q = 256

Q = 16

Cardinality

Cardinality

Fig. 1. SER versus SNR for 2×2 MIMO in frequency–flat Rayleigh fading
channels (M = 2, L = 4, Q ∈ {16, 256}).

6: Update codewords as X m ← X m+β∇[m]
λi,j

, where β ∈ R

is a stepsize factor which is optimized by line searching
to maximize mini�=j λi,j

7: Normalize the energy such that ‖X m‖2 = M
8: Repeat from 2 until λi,j sufficiently converges

Using multiple initial codewords or small perturbations of
optimized codebook, the gradient method yields well–designed
codebook. It is also straightforward to adopt this design
method for the high–order super–block GLRT because we
have ∂X ′

m = D∂Γ m.

C. Optimization for Exponential Mapping Grassmann Codes

The numerical optimization method was originally used for
non–parametric code design in [11]. It is also applicable to
the design of parametric non–coherent codes. As an example
to show the gains achieved by our optimization method,
an improved version of the exponential mapping Grassmann
codes is presented here. The conventional Grassmann codes
with exponential mapping uses the fixed parameters ϑ and φ
in (9). We optimize those parameters by the gradient method
with a slight modification as

∂λi,j

∂γ
=

Q∑
m=1

tr
[∂X †

m

∂γ
∇[m]

λi,j

]
, (20)

where γ ∈ {α, ϑ, φ} is a parameter to be optimized.
In Fig. 1, we plot the symbol error rate (SER) performance

to compare between the conventional Grassmann codes and
the improved Grassmann codes with the optimized parameters,
for M = 2, N = 2 and L = 4 over frequency–flat
fading channels. One can see from this figure that our design
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High-Order Codes
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Fig. 2. Non–coherent M ×N MIMO–OFDM systems employing (M×L)–
dimensional Grassmann SFBC and D–th order GLRT algorithm.

optimization method offers approximately 3.0 dB and 2.0 dB
gains for Q = 16 and Q = 256 cardinalities at an SER of
10−5.

V. PERFORMANCE EVALUATION

Now, we show the performance advantage of our proposed
GLRT over the conventional GLRT through computer simu-
lations. Fig. 2 shows an overview of the high–order GLRT
algorithm for non–coherent MIMO–OFDM systems. We use
L = 8 symbols for non–coherent Grassmann codes with a
cardinality of Q = 4. The transmitter uses M = 2 antennas
and the receiver uses N = 2 antennas. We assume that the
channel is frequency–selective Rayleigh fading with an equal–
gain power delay profile. The number of subcarriers is 128 so
that 16 SFBC blocks are multiplexed over frequency domain
via OFDM one symbol. For super–block GLRT, we choose
K = 2 blocks. For high–order GLRT, the polynomial order
is set to be D ∈ {0, 1, 2, 3, 4}. The virtual codebook and the
projector bank are predetermined by the original codebook.

Figs. 3, 4 and 5 show SER as a function of average
SNR for 2–path, 8–path and 16–path fading, respectively as
a low–, moderate–, and high–selective channels. The channel
correlation factors between adjacent SFBC blocks are 0.98,
0.64 and 0.00 respectively for 2–path, 8–path and 16–path
channel conditions. For 2–path channels in Fig. 3, there is
a small fluctuation of channel coefficients over subcarriers,
that makes the 0–th order super–block GLRT offer the best
performance. We can observe more than 3 dB gains at a SER
of 10−4 when the sequential super–block GLRT is employed.
It is because the high channel correlation between neighbor-
ing SFBC blocks can be fully exploited by longer effective
code lengths. Hence, further improvement can be expected
by using larger K with a cost of computational complexity.
The selective decision has 1 dB inferior performance over the
sequential decision, while it still offers better performance
than the conventional GLRT by 2 dB. For such a low selective
fading, high–order GLRT is of no use because higher–order LS
regressions more consume the degrees of freedom for curve
fitting (i.e., over–fitting loss).

For 8–path fading channels in Fig. 4, the conventional
GLRT (0–th order) has a poor performance which saturates

to a SER of 10−3 even in the high SNR regimes because the
channel frequently changes during one SFBC block due to the
low channel correlation of 0.68. It is seen that the 1–st order
GLRT has a significant performance improvement in partic-
ular for high SNRs. It is remarkable that the computational
complexity of higher–order GLRT is exactly same as that of
the conventional GLRT. The 2–nd order GLRT degrades its
performance gain because the channel selectivity is not so
severe. The 2–nd order super–block GLRT (employing the
sequential decision) provides additional 4 dB gains at a SER of
10−4 from the 1–st order GLRT. The 1–st order super–block
GLRT has a saturating performance like the conventional
GLRT. It suggests that we need to use appropriate order D
and super–block length K according to the channel condition.

For 16–path channels in Fig. 5, the conventional GLRT
does not work (SER performance is much higher than 10−1)
because of the highly selective channel over subcarriers (zero
channel correlation between adjacent SFBCs). The 4–th order
super–block GLRT offers a significant performance improve-
ment over the conventional GLRT receiver. It is surprising that
the performance degradation from Fig. 3 can be effectively
compensated by high–order super–block GLRT even for the
extremely selective 16–path channels which experience zero
channel correlation between adjacent SFBC blocks.

Through this section, we demonstrated that our proposed
scheme is very advantageous to deal with channel selectivity
when we properly choose the order D and the super–block
length K. It is highly expected that our proposed scheme still
performs well for any practical channel models. It remains
some future works regarding the adaptive selection of D and
K according to the channel conditions.

VI. CONCLUSION

In this paper, we propose an improved GLRT receiver
termed high–order super–block GLRT for non–coherent
MIMO systems in which CSI is not available at either
transmitter or receiver. By introducing the high–order LS
regressions, our proposed method can deal with a drawback
of the conventional GLRT, more specifically, from a severe
performance degradation when the channel changes fast during
a non–coherent code block. We demonstrated that the high–
order super–block GLRT offers a significant performance
improvement over the conventional GLRT in particular for
highly selective fading channels. There is no increase in
computational complexity for the high–order technique while
the super–block technique increases the complexity.

In addition to the algorithm development, we optimize non–
coherent Grassmann codes to minimize the pairwise error
probability through the use of the gradient method as a
practical solution for packing spheres on the Grassmann man-
ifold. We exemplified the advantage of our design method by
improving the existing Grassmann codes based on exponential
mapping. An adaptive selection of the order and super–block
parameters remains a subject of further study.

978-1-4244-5637-6/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.



10-4

10-3

10-2

10-1

100

-5  0  5  10  15  20  25

S
E

R

SNR (dB)

Conventional
High-order (1-st)

High-order (2-nd)
Super (Selective)

Super (Sequential)

High-Order GLRT

Super-Block GLRT

Conventional GLRT

Fig. 3. SER versus SNR for 2 × 2 MIMO–OFDM in frequency–selective
2–path Rayleigh fading (0.98 channel correlation between adjacent SFBCs).

10-4

10-3

10-2

10-1

100

-5  0  5  10  15  20  25

S
E

R

SNR (dB)

Conventional
High-order (1-st)

High-order (2-nd)
Super 1-st order

Super 2-nd order

High-Order

High-Order Super-Block

Conventional

Fig. 4. SER versus SNR for 2 × 2 MIMO–OFDM in frequency–selective
8–path Rayleigh fading (0.64 channel correlation between adjacent SFBCs).

REFERENCES

[1] G. J. Foschini, “Layered space–time architecture for wireless commu-
nication in a fading environment when using multi-element antennas,”
Bell Labs. Tech. J., vol. 1, no. 2, pp. 41–59, 1996.

[2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecomm., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[3] T. Marzetta and B. Hochwald, “Capacity of a mobile multiple-antenna

10-4

10-3

10-2

10-1

100

-5  0  5  10  15  20  25

S
E

R

SNR (dB)

Conventional
High-order (1-st)

High-order (2-nd)
Super 3-rd order
Super 4-th order

1-st Order

Conventional

2-nd Order

3-rd Order Super-Block

4-th Order Super-Block

Fig. 5. SER versus SNR for 2 × 2 MIMO–OFDM in frequency–selective
16–path Rayleigh fading (zero channel correlation between adjacent SFBCs).

communication link in Rayleigh flat fading,” IEEE Trans. Inf. Theory,
vol. 45, pp. 139–157, 1999.

[4] L. Zheng and D. N. C. Tse, “Communication on the Grassmann
manifold: a geometric approach to the noncoherent multiple-antenna
channel,” IEEE Trans. Inf. Theory, vol. 48, no. 2, pp. 359–384, Feb.
2002.

[5] B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens, and
R. Urbanke, “Systematic design of unitary space–time constellations,”
IEEE Trans. Inf. Theory, vol. 46, no. 6, Sept. 2000.

[6] Y. Jing and B. Hassibi, “Unitary space-time modulation via Cayley
transform,” IEEE Trans. Signal Proc., vol. 51, no. 11, pp. 2891–2904,
Nov. 2003.

[7] B. Hochwald and W. Sweldens, “Differential unitary space-time modu-
lation,” IEEE Trans. Commun., vol. 48, pp. 2041–2052, Dec. 2000.

[8] I. Kammoun, A. M. Cipriano, and J.-C. Belfiore, “Non-coherent codes
over the Grassmannian,” IEEE Trans. Wireless Commun., vol. 6, no. 10,
pp. 3657–3667, Oct. 2007.

[9] I. Kammoun and J. Belfiore, “A new family of Grassmann space-time
codes for non-coherent MIMO systems,” IEEE Commun. Lett., vol. 7,
no. 11, pp. 528–530, Nov. 2003.

[10] M. J. Borran, A. Sabharwal, and B. Aazhang, “On design criteria and
construction of non-coherent space-time constellations,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2332–2351, Oct. 2003.

[11] M. Beko, J. Xavier, and V. Barroso, “Codebook design for non-coherent
communication in multiple-antenna systems,” IEEE ICASSP, Toulouse,
France, 2006.

[12] B. L. Hughes, “Differential space–time modulation,” IEEE Trans. Inf.
Theory, vol. 46, no. 7, pp. 2567–2578, Nov. 2000.

[13] V. Tarokh and M. Kim, “Existence and construction of noncoherent
unitary space-time codes,” IEEE Trans. Inf. Theory, vol. 25, no. 8, pp.
3112–3120, Dec. 2002.

[14] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and
Time Series Analysis, New York: Addison-Wesley Publishing Co., 1990.

[15] T. K. Akino, “Optimum-weighted RLS channel estimation for rapid
fading MIMO channels,” IEEE Trans. Wireless Commun., vol. 7, no.
11, pp. 4248–4260, Nov. 2008.

978-1-4244-5637-6/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.


	Title Page
	Title Page
	page 2


	High-Order Super-Block GLRT for Non-Coherent Grassmann Codes in MIMO-OFDM Systems
	page 2
	page 3
	page 4
	page 5
	page 6


