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Abstract—Compressive Sensing (CS) has recently emerged as
significant signal processing framework to acquire and recon-
struct sparse signals at rates significantly below the Nyquist rate.
However, most of the CS development to-date has focused on
finite-length signals and representations. In this paper we present
a new CS framework and a greedy reconstruction algorithm,
the Streaming Greedy Pursuit (SGP), explicitly designed for
streaming applications and signals of unknown length. Our
sampling framework is designed to be causal and implementable
using existing hardware architectures. Furthermore, our recon-
struction algorithm provides explicit computational guarantees,
which makes it appropriate for real-time system implementations.
Our experimental results on very long signals demonstrate the
good performance of the SGP and validate our approach.

I. INTRODUCTION

The ever-increasing demand of modern systems for better
signal quality and higher data rate has driven the development
of new techniques to acquire and process signals of interest.
Compressive Sensing (CS) [1]–[3] has emerged as a powerful
signal processing framework that enables extremely efficient
acquisition by exploiting the sparse structure of most natural
and man-made signals. The success of CS has driven both
algorithm and hardware development to implement the theory,
which places significant emphasis on randomized incoherent
measurements at the acquisition stage and increased compu-
tation at the reconstruction stage.

Most of the CS results to date focus on finite-dimensional
signals. Although the hardware exists which can acquire
streaming signals, such as audio, video and radio [4]–[8], but
the unstated assumption is that the signal is processed in finite-
length blocks. Each block is compressively sampled and recon-
structed using one of the known finite-dimensional algorithms.
Such an approach can introduce significant blocking artifacts
and significant input-output delay. Furthermore, most of the
existing finite-dimensional reconstruction algorithms do not
provide strict guarantees on the computation time, a critical
requirement in streaming real-time systems. Thus, significant
buffering of the input or excessive allocation of computation
time for reconstruction might be required to ensure that the
system satisfies timing requirements for on-line processing.

In this work we examine a CS framework, originally pro-
posed in [9], with features explicitly designed for streaming
signals. While [9] focuses on developing the Streaming Greedy
Pursuit (SGP) for signals sparse in the frequency domain, and

its application in high-speed video acquisition [10], here we
develop the SGP for signals sparse in the time domain.

As with the frequency domain version, the time-domain
SGP is a causal algorithm inspired by the Compressive
Sampling Matching Pursuit (CoSaMP) [11] and designed to
process streaming measurements. The SGP operates at a fixed
input rate, computes the reconstruction with a fixed cost per
input measurement and outputs the estimated streaming signal
at a fixed output rate. The streaming framework we present
explicitly avoids processing the signal in blocks and therefore
avoids blocking artifacts. Furthermore, in our framework we
restrict ourselves to fixed computational cost per measurement
which provides explicit trade-offs between input-output delay,
reconstruction performance and computation. These features
make our framework very well-suited for real-time applica-
tions. A significant advantage of our framework is that we can
directly accommodate a variety of signal models by modifying
CoSaMP iteration, such as [12]–[14].

A formulation for streaming signals poses significant dif-
ficulties compared to a fixed-length one. A streaming signal
and the corresponding measurements are infinite dimensional
vectors. Thus, the usual CS definitions of sparsity and dimen-
sionality reduction need to be reformulated as rates. Streaming
time-domain sparsity can potentially be captured in a wide
variety of definitions. In this paper we focus on measuring
and recovering discrete-time signals. Our choice in defining
sparsity is the discrete-time equivalent of signals with finite
rate of innovation (FRI) [15]. Although we make connections
with the FRI literature, we do not explore them significantly
and we do not claim any progress in establishing them.

Our goal in this paper is to describe the measurement
framework and present a system architecture using random
demodulation [4], [6] or random LTI filtering [5], [16]. We
also provide a reconstruction algorithm for signals sparse in
the time-domain. While we mention and briefly discuss some
of the theoretical difficulties and implications of our endeavor,
we defer detailed analysis to future publications. Instead, we
present experimental results validating our approach.

To establish the background and notation we briefly review
signal acquisition and CS in Sec. II. Section III formulates the
streaming models and constructs, possible implementations,
and connections with the FRI literature. Section IV describes
the SGP algorithm. We present experimental results in Sec. V.
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Fig. 1. Basic Streaming Acquisition System

II. BACKGROUND

A. Signal Acquisition

To introduce CS to streaming applications we consider the
general streaming system depicted in Fig. 1(a). The signal
x(t) is acquired using an acquisition system (“Acq.” in the
figure) at an average rate of M measurements per time unit and
subsequently reconstructed (“Recon.” in the figure) using those
measurements. In most classical signal acquisition systems the
acquisition component is an analog-to-digital converter (ADC)
which obtains linear measurements using a low-pass anti-
aliasing filter followed by uniform time sampling and quanti-
zation. The reconstruction component is the linear bandlimited
interpolation of the measurements ym.

An equivalent discrete-time system is shown in Figure 1(b).
The discrete-time signal xn may represent x(t) under a
suitable representation or it might be an inherently discrete-
time signal. For example, in classical bandlimited sampling
and interpolation xn = x(nT ), where T is the signal Nyquist
period. In this case the acquisition and reconstruction compo-
nents are the identity (i.e., m = n and x̂n = yn = xn) and the
implied reconstructed signal x̂(t) is the bandlimited interpola-
tion of x̂n. More general cases with less trivial acquisition and
reconstruction components are discussed in [17]. In this paper
we only consider discrete-time systems. We assume that if the
signal of interest is continuous-time, a discretization exists and
describes the acquisition system to sufficient accuracy.

Acquiring a general signal xn requires an acquisition rate
of M measurements ym per time period that is greater than or
equal to the input rate of N signal coefficients per time period.
Otherwise, the system is not invertible for all input signals and
information is lost. However, with additional information on
the signal structure it is possible to acquire a signal at a lower
measurement rate M � N and still reconstruct it.

B. Compressive Sensing

Compressive Sensing [1]–[3] demonstrates that a signal
sparse or compressible can be efficiently sampled and recon-
structed using very few linear measurements. The signal of
interest, x ∈ RN , is measured using the system

y = Ax, (1)

where y denotes the measurement vector and A an M × N
measurement matrix with M � N . The signal x is assumed
K-sparse, i.e., it contains only K non-zero coefficients.

The measurement matrix A satisfies the Restricted Isometry
Property (RIP) of order 2K if there exists a constant δ2K < 1
such that

(1− δ2K)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ2K)‖x‖22, (2)

for all 2K-sparse x. If the RIP constant δ2K is sufficiently
small, then the signal can be exactly reconstructed using the
convex optimization [3]

x̂ = arg min
x

‖x‖1 s.t. y = Ax. (3)

or a greedy algorithm such as CoSaMP [11]. Furthermore, a
small RIP constant provides robustness guarantees for recov-
ery in the presence of measurement noise and for sampling sig-
nals that are not exactly sparse but can be well-approximated
by a sparse signal [3], [11].

Significant work has been performed on hardware imple-
mentations of CS on streaming signals such as [4], [6], [8].
Such efforts focus on the hardware architectures that enable
random projections. However, the unstated assumption on
the signal processing side is that the signal is processed in
finite-length blocks. Each block is compressively sampled
and reconstructed using one of the known finite-dimensional
algorithms.

III. STREAMING COMPRESSIVE ACQUISITION

A. Measurement System Model

We measure a streaming, infinite-dimensional signal xn

using a time varying linear system am,n as

ym =
∑

n

xnam,n = 〈x,am〉, (4)

where ym is the sequence of measurements, and am is
sequence of infinite-dimensional measurement vectors. The
system has an input rate of N coefficients per unit time for xn

and an output (measurement) rate of M = N/R measurements
per unit time, where R denotes the downsampling rate. For
notational simplicity, in the remainder of this paper we assume
that R is an integer1.

We consider causality an essential aspect of a streaming
formulation, and, therefore, we assume the measurement sys-
tem is causal. We further assume it has a finite response of
maximum length LR. Finite response length is not essential
but a convenience in our development. Infinite response mea-
surement systems can be incorporated to our framework, but
it is not an extension we consider in this paper.

Under those assumptions, the system am,n has support in

n = (m− L)R + 1, . . . ,mR, (5)
⇔ m = dn/Re, . . . , dn/Re+ L− 1, (6)

and is zero outside. Figure 2(a) summarizes the relevant
parameters of the measurement system am,n. The shaded area
demonstrates the support of the system relative to the axes. The
system coefficients are zero in the unshaded area. The causality
requirement imposes a lower triangular structure to the system.
The finite response length assumption further constrains the
nonzero coefficients to lie within a band of height L below
the main diagonal.

1In several instances in this paper we assume rates and lengths are integer
multiples of each other. Non-integer rates are straightforward to accommodate
with appropriate use of rounding operators. However, the notation becomes
cumbersome without adding any insight to the fundamental concepts.
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Fig. 2. Overview of the acquisition system and its parameters

B. Sparsity Model and RIP

We assume the signal is sparse in the time-domain and
impose a streaming sparsity model. Specifically, we assume
there are at most K nonzero coefficients in any sequence of N
signal coefficients, where K and N are determined at design
time. We call S = K/N the sparsity rate. Using this sparsity
model, we formulate the RIP for the measurement system by
considering time-windows of length N in the signal domain,
as shown in Fig. 2(b). In any such window we define the RIP
as in (2).

This model is fairly flexible since it allows the signal to
be dense in a small region—as long as the preceding and
the subsequent coefficients have sufficient sparsity to meet the
overall sparsity requirement for a length-N window—or to be
uniformly sparse over time.

In a streaming system establishing the RIP over a fixed
window is only part of the system design considerations. In
a randomized infinite-dimensional setting, even though the
probability of RIP failure is small, the RIP might still fail
for some window. Often the streaming signal sparsity might
temporarily exceed the original assumptions at the design stage
of the system. The reconstruction algorithm we describe in the
next section is robust to such failures and sufficiently stable to
ensure that local reconstruction errors do not propagate to the
subsequent reconstruction. Furthermore, the top and bottom L
measurements in each window are also affected by signal com-
ponents outside that window. A properly designed algorithm
should take those measurements correctly into account.

C. Implementation

The measurement model we explore is fairly general. There
is no requirement that all the coefficients in the support are
non-zero. Therefore, with appropriate choice of parameters
the model encompasses several sampling methods proposed
for CS such as random sampling, periodic non-uniform sam-
pling, random demodulation, and random filtering, and block-
diagonal, among others (for examples, see [4]–[8]).

Of course, not all of those methods are appropriate for sig-
nals sparse in the time domain; a simple random demodulator
or a random sampler, for example, can certainly fail. The RIP
property, as described above, is a fairly good predictor of
how appropriate is the system for time-domain sparse signals.
Intuitively, we need the columns of the measurement system to
measure and significantly “mix” many time domain samples,
i.e., the rows of the system to be incoherent with time domain
impulses and sufficient in number. This requires that most of
the support of the system be populated with non-zero elements;

p0
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n
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...
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(a) Interleaved Random Demodulators

xn −→ hn −→ ↓R −→ ym

(b) Randomized LTI filtering and decimation

Fig. 3. Possible implementation of the streaming measurement system

we describe two different implementation that achieve that
goal.

The first, shown in Fig. 3(a), uses a bank of L interleaved
random demodulators operating at rate of one measurement
per LR signal samples each, and sampled sequentially in a
round-robin fashion at a rate of a measurement per R signal
samples. The advantage of this approach is that it correspond
to a very efficient analog implementation, as described in [4].
The pl

n—where l = 0, . . . , L − 1 denotes the demodulator
index—is referred to as the chipping sequence of the demod-
ulator and is typically chosen as a random sequence taking
values of ±1. Thus the multiplication is easily implementable
using a simple switch reversing the polarity of the input signal.
The more expensive component of an analog acquisition
system, the quantizer, only needs to be implemented once for
all L demodulators, after the round-robin switch.

An alternative approach, shown in Fig. 3(b), is to build
a length LR LTI filter with random impulse response hn,
followed by decimation by R [5], [16]. Randomization of the
impulse response ensures incoherence with its shifts but makes
analog implementation of the filter difficult. Thus it is more
appropriate for naturally discrete-time systems. Thanks to the
decimation following the LTI filter the system can be imple-
mented efficiently using standard polyphase filterbanks [18].

D. Connections to signals with Finite Rate of Innovation

Our model is the discrete-time equivalent to signals with
finite rate of innovation (FRI) (see [15], [19], [20], and ref-
erences within). The FRI model assumes that the continuous-
time signal of interest is composed of a sequence of at most
K time-domain pulses within any finite time interval T . The
intent is to sample and recover the timing and amplitude of
each of the K pulses—equivalent to the support and amplitude
in our discrete-time model. The rate of innovation is 2K
unknowns per time interval T , and the signal can in principle
be recovered using 2K samples of signal using uniform
sampling with an appropriate filtering kernel.

The original work [15] assumes a periodic sequence of
Dirac impulses and provides an elegant but numerically
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unstable solution. Followup work focused on stability and
on generalizing beyond periodic signals. Most infinite-length
approaches treat the problem as a sequence of finite-length or
periodic problems, either suffering from significant instability
or requiring boundary assumptions such as a bursty signal
model. To our knowledge the FRI model is not easily amenable
to theoretical analysis on the amplitude and the timing errors
under noise or quantization, equivalent to the signal and
support recovery analysis, respectively, in the CS literature.

While our current work does not directly address most of the
issues, it is a first step in achieving streaming reconstruction
for FRI signals. Specifically, using a bank of interleaved
random demodulators operating at rate N pulses per time
interval T , as described in Sec. III-C above, we can sample
and recover arbitrary streams of FRI impulses and provide
guarantees on the recovery error under noise. Furthermore,
any impulse correctly recovered by such a system will be due
to an FRI impulse within a timing interval of T/N captured by
the demodulators; thus we can leverage standard CS support
recovery analysis. The drawback of our approach is that exact
timing recovery is not possible even under the noiseless case.
Furthermore a slight oversampling by O(log N/K) over the
rate of innovation 2K is required to guarantee the RIP of the
measurement system. We defer the details of such an approach
to a future publication.

IV. STREAMING GREEDY PURSUIT

To simplify the presentation of the Streaming Greedy Pur-
suit (SGP) algorithm, we first discuss the fundamental algo-
rithm iteration step in Sec. IV-A, followed by more detailed
discussion of the signal estimation part in Sec. IV-B.

A. Streaming Iteration

The SGP operates by estimating the signal on a sliding
window of Wx signal coefficients using Wy measurements.
After each iteration R new signal coefficients (to be estimated)
are included in the coefficient window and the oldest R are
considered final estimates, removed from the window and
committed to the output. Similarly, a new measurement is
incorporated at the end of the measurement window and
the oldest measurement is removed from the beginning. The
measurements are also updated to remove the influence of the
committed coefficients such that the updated measurements
can be explained only from the uncommitted coefficients. This
approach in handling the streaming measurements is the main
difference between the iterations of SGP and CoSaMP.

Algorithm 1 Streaming Iteration for SGP
1: loop
2: Increase iteration count: i← i + 1
3: Refine working estimate:

x̃i ← Refine(x̂i−1, ŷi−1, Âi−1),
where Refine(·) is described in Algorithm 2.

4: Commit coefficients estimate:
x̂Ri+j = x̃i

j , j = 1, . . . , R,
where x̂n is the streaming signal estimate at the output.

5: Slide working coefficients window:

x̂i ←
[

x̃i
{(R+1),...,Wx}

0R

]
,

where 0R is the zero vector.
6: Remove committed coefficients from working measure-

ments:
ỹi ← ŷi−1 − Âi−1

∣∣∣
{1,...,R}

x̃i
{1,...,R}

7: Slide working measurement window:

ŷi ←
[

ỹi
{2,...,Wy}
yi+Wy

]
8: Slide working measurement matrix:

Âi ←

[
Âi−1
{2,...,Wy},{R+1,...,Wx} 0(Wx−R)

a(i+Wy),{Ri+1,Ri+Wx}

]
,

which sets (Âi)k,l = a(k+i),(Ri+l) for k = 1, . . . ,Wy

and l = 1, . . . ,Wx.
9: end loop

In every ith iteration, the SGP maintains a working signal
estimate of length Wx, denoted x̂i, a working measurement
matrix of dimension Wy×Wx, denoted Âi, and a measurement
vector of length Wy , denoted ŷi. The iteration is presented in
Algorithm 1, where we use the (·)m notation to denote the
mth element of a vector and (·){m1,...,m2} to denote a range
of elements. Non-boldface characters denote the underlying
streaming signals, as described in Sec. II-A and III.

The working matrix Âi and its evolution after each iteration
with respect to the system am,n is shown in Fig. 4(a) and (b).
From the figure it becomes obvious that the true measurements
ym do not reflect the working measurements (y){1,...,L} cor-
responding to the first L rows of the working matrix Âi. The
working measurements, reflecting only the uncommitted part
of the signal, are updated accordingly at Step 6 in Algorithm 1.

Any error in the committed coefficients is propagated back
to the working measurements and increases the error in subse-
quent estimates. Such errors can be due to initial conditions,
RIP failures of the measurement system, or sparsity model
mismatches for the streaming signal. Still, it is possible to
demonstrate that the SGP algorithm is stable and quickly
recovers from such errors.

B. Signal Estimation and Refinement

The signal estimation and refinement step 3 of the SGP,
summarized in Algorithm 2, is similar to one CoSaMP it-
eration. The algorithm computes the unexplained residual in
the current working measurement window and forms a signal



proxy to explain it. In that proxy it identifies T largest
coefficients and merges their support set with the support of
the current signal estimate. The algorithm then re-estimates
the signal by solving a least squares (LS) problem over the
merged support. Finally, the SGP truncates the solution to its
K largest coefficients.

Although the refinement steps are similar to one CoSaMP
iteration, they differ from CoSaMP in two significant ways:
(i) In order to keep the computational cost of every iteration
fixed and as small as possible, the number of support elements
T selected from proxy at every iteration is chosen to be much
smaller than the sparsity K of the signal. This results in a small
computational cost for solving LS problem in step 4 at every
iteration, where 2T rank-one updates can be used to update
the LS solution from the previous iteration [21]. Alternatively,
instead of using direct method to update LS solution in step
4, one can compute an approximate solution using a fixed
number of iterations of some suitable iterative solver such as
conjugate gradient (CG) [11], [22].
(ii) The proxy and the LS problem are computed using a
weight w on the measurements, with less weight on the
most recent L measurements. This discourages adding the
last LR coefficients (x̃){Wx−LR+1,...,Wx} in the support; not
all measurements affected by those coefficients are available
yet, making the proxy and their estimates less reliable. These
correspond to the lower right L × LR triangular portion of
Âi, which makes Âi in Fig. 4(a) differ from Fig. 2(b).

The choice of L is an important trade-off in the algorithm.
With a fixed working window Wx, as L increases, the proba-
bility of satisfying the RIP for denser signals increases and
the estimation improves. However, a larger portion of the
working matrix Âi is occupied by the lower right triangular
part, making the estimation less reliable. This trade-off is
further explored in the experimental section. A longer working
window Wx reduces this effect but increases the computational
cost and the input-output delay of the algorithm.

For the same reason, SGP does not guarantee exact recon-
struction. The performance is a function of the computational
cost. The longer the window length Wx, the more iterations
are used to refine the estimate of each signal coefficient
and the better the reconstruction performance. In addition,
the guarantees provided by the CoSaMP iteration ensure the
stability of the error propagation for the parts of the signal
committed to the output. Thus, even if part of the signal is
misidentified for any reason and then committed, the feedback
in the algorithm does not become unstable and quickly reverts
to the correct estimate.

V. EXPERIMENTAL RESULTS

In this section we present some experimental results for the
recovery performance of the SGP.

In the first set of experiments we study the recovery perfor-
mance of SGP for time-sparse signals. We explore different
values of signal sparsity rate (S) and downsampling rate (R)
using measurements from both the random demodulator and
the random filter. We perform the experiments for R = 2,

Algorithm 2 Signal Refinement function Refine(·)
1: Calculate Residual:

ri ← ŷi−1 − Âi−1x̂i−1,
2: Compute Signal Proxy:

pi ←
(
Âi−1

)T

W2ri,
where (·)T denotes the matrix transpose, and W is a
diagonal matrix with a weight vector w in its diagonal.

3: Identify and Merge Support:
Ω← supp

(
x̂i−1

)
∪ supp

(
pi

∣∣
T

)
,

where supp (·) denotes the support index set of a sparse
vector, and p|T denotes truncation of the vector p to its
T largest in magnitude coefficients

4: Estimate Signal over Support:

bi ←
(
W Âi−1

∣∣∣
Ω

)†
Wŷi−1

5: Truncate Estimate:
x̃i ← bi

∣∣
K

4 and 8, with signal window length Wx = 400, 800 and
1200 respectively, and Wy = Wx/R. To generate a streaming
signal x with average sparsity rate S, we select the nonzero
locations independently with probability S by flipping a biased
coin at every location. The signal values at nonzero locations
are independently chosen to be ±1 with equal probability.
Generating the support using a coin flip does not guarantee a
fixed maximum sparsity assumed in Sec. III-B. This allows us
to test the stability of the algorithm under model mismatches.

The streaming signal is measured using a random demodu-
lator or random filter, as described in sec. III-C). The elements
in the chipping sequences pl

n for the random demodulator
and the impulse response hn for the random filter are chosen
from ±1 with equal probability. Gaussian noise N(0, σ2) at
35db SNR is added to the measurements. In this experiment
we choose L = Wy/3; we investigate this choice in the
second set of experiments, below. The signal estimate x̂ is
reconstructed from streaming noisy measurements using the
SGP with K = 1.2SWx and T = K/2, by running 5 CG
iterations for the LS update in step 4 of Algorithm 2. We
measure the recovery performance in terms of the probability
of exact recovery (PER) and the signal to error ratio (SER) of
the reconstructed signal. The PER is the ratio of number of
coefficients which are misclassified as zero or nonzero in x̂,
within a small tolerance (e.g., 5σ) to their original value, over
the total number of coefficients in x. The SER is equal to

SER = 20 log10

‖x‖2
‖x− x̂‖2

.

Figure 5 plots the results, where each point represents the
average performance over 20 trials on 20000 samples long
signal. Plots (a) and (c) on the left correspond to the random
demodulator experiments and plots (b) and (d) on the right
correspond to random filtering experiments. The PER and SER
curves for both systems show gradual performance degradation
as the S increases for fixed value of R, and recovery is almost
exact when the average sparsity rate is S < 1/10R. This
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Fig. 5. Performance of the SGP for different downsampling rates (R) against
varying sparsity rate (S) of the streaming signal. Left: Random demodulator.
Right: Random filter.
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Fig. 6. Performance of the SGP for different sparsity rates (S) and response
lengths (L). Left: Random demodulator. Right: Random filter.

behavior is similar to the usual CS rule of thumb, dictating a
small constant oversampling factor compared to the sparsity
rate.

In the second set of experiments we study the effects of
response length L on the system performance, assuming a
fixed window length Wx and downsampling rate R. The
simulation setup is same as above, where the streaming signal
x at sparsity rate S is measured with random demodulator or
random filter at downsampling rate R. The SER results for
recovery with Wx = 400, R = 2, and Wy = Wx/R using
different values of L and S are presented in Fig. 6, where the
left plot corresponds to the random demodulator and the right
plot corresponds to the random filter based measurements. The
figure demonstrates the trade-off in designing L, where per-
formance degrades significantly for very large and very small
values of L. Empirically, the best performance is achieved
when L ≈Wy/3. At that level of L we obtain the best trade-
off between the width of the RIP block and the lower right
triangular portion of the working measurement matrix.

While we have only presented the tip of the iceberg in this
rich topic, we have demonstrated that CS principles can be
effectively used to causally sample and reconstruct streaming
time sparse signals. We believe that the SGP is a significant
tool for the designer of real-time systems and we have already
used it in some of our designs [9], [10].
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