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Abstract— With emerging of electric vehicles (EV), portable
charging stations (PCSs) will play a key role to manage EV
charging operations off-grid. Otherwise, charging hundreds of
EVs at random locations and time instants would create major
burden on a power supply network. This work addresses an
outstanding issue in PCS networks: development of dynamic
pricing strategies between buyer EVs and energy sellers to
optimize deployment of PCSs. Constraints are formulated, and a
realistic and yet simplistic energy incentive model is developed.
A method for optimum PCS deployment to maximize profit for
PCS service providers is developed for single-buyer-single-seller
and multiple-buyers-single-seller cases, conditioned on a given
pricing strategy.

I. INTRODUCTION

Transportation alone utilizes more than two thirds of the oil
consumed in the United States and is responsible for about
6,000 million metric tons of carbon dioxide emissions in
2008 [1].With the long term increase in energy cost and the
challenge of global warming, electric vehicle is fast becoming
recognized not only as an economically viable alternative to
traditional internal combustion engine based transportation but
also offered as an effective green transportation.

According to recent projection, electric vehicles (EV) will
begin its roll out in large volume in 2010, and will reach
one million around 2015 in the USA [2]. At the same time,
this roll out will need to be well supported by an appropriate
infrastructure such as outdoor battery charging stations and
by supportive government policy and regulations. In North
America, electric vehicles will likely be mainly charged at
home. However, there are many big cities where majority
of the households do not have their own garages, less to
say a vehicle charger. Hence, charging may take place at
work or in and around the city. Infrastructure and appropriate
methodology for charging electric vehicle being adopted to
ensure minimum outage and maximum energy efficiency are
vital to the success and long-term viability of the electric
vehicle industry.

There are three categories of electric chargers that EVs can
be charged from, namely, fixed, nomadic and mobile energy
storage. A fixed energy storage is the grid infrastructure while
nomadic energy storages can vary from a simple high capacity
EVs to very large scale premium power storages shown in Fig.
1.

Nomadic energy storage systems are ones which can be
easily relocated but not mobile. On the other hand the third
category of energy storage system is mobile systems, which in

Fig. 1. Illustration of a portable energy storage [Adopted from [3]].

this paper is also referred to as portable systems. A portable
storage system implies transferring the drawing of energy not
from the classical concept of grid, but from moving electric-
powered devices either for its own use or to sell its stored
energy later on to a buyer.

The most commonly known portable energy storage is the
EV which provides plenty of opportunity for utility companies
to more efficiently manage their generating capacity by ex-
ploiting under-utilized energy capacity during the nights when
many of the power generators have to continue to run and wind
energy is usually at its peak. By allowing EVs and other forms
of energy storage stations to charge up during the nights, they
would help to ”soak up” the energy which would otherwise
be wasted. These charged vehicles and energy storage stations
could then deliver the energy back to consumers, including
those vehicles which have no means to charge during the
nights.

Among the most important enablers of EV and portable
energy storage station are advances in particularly Li-ion
battery technologies, which have made longer range electric
vehicles possible [4],[5].

This paper presents the use of optimum distribution of
portable energy storage stations to reduce outage and max-
imize energy efficiency of an EV network. Here, in this paper,
we classify the electric vehicle into two categories, namely, the
buyers and the sellers. We will discuss the physical and virtual
distance tolerances of the buyers and sellers and develop
energy efficiency and incentive models for uncoordinated
electric vehicles and the optimum locations for which the



buyer and sellers should meet. To date, there is almost no
known literature discussing the relationship of portable energy
storage stations and the potential electric vehicle network. This
paper is among the first to help establish and understand the
dynamics and the energy requirements of EV networks.

II. MODELING CONSTRAINTS

A. Physical Distance Tolerance

Assume that EV i starts its trip at a constant velocity vi with
initial energy level ei between two points A and B, which are
separated by rAB and also that energy consumption per unit
distance traversed is ki. If ei < kirAB , recharging during its
trip would be mandatory for EV i to prevent energy outage.
We model physical distance tolerance (PDT) as a function of
time and define it as the distance that can be traversed by an
EV without recharging its battery. We express PDT as

T (i)
p (t) ≡ max

(
0,

ei

ki
− vi(t)t

)
. (1)

In Fig.2, a typical PDT is illustrated. The tolerance de-
creases as an EV moves along its route to a destination, and
becomes zero upon draining its battery. It is essential for an
EV to recharge its battery within its PDT, if its energy reserve
is not sufficient to reach its destination. Otherwise, for the EV
energy outage occurs.

Fig. 2. Illustration of PDT circles. The initial energy reserve of the EV is
shown to be 8 units. It is assumed that 1 unit energy is consumed per grid
unit distance. The PDT becomes zero before reaching destination B. PDT is
trip distance independent.

B. Virtual Distance Tolerance

We assume that EV i would be willing to deviate for a
certain distance from its original route to perform a critical
ad-hoc task such as recharging its battery. Maximum possible
deviation at a given time is called the virtual distance tolerance
(VDT), and denoted by T

(i)
v (t). Larger deviations are assumed

to be more likely at an earlier stage of a longer trip. During

Fig. 3. Illustration of VDT circles. The VDT circles become infinitesimally
small closer to destination. VDT is trip distance dependent.

shorter trips, deviations would be less than those during longer
ones. We model T

(i)
v (t) as

T (i)
v (t) ≡ max

(
0, e−λit

(
rAB − vi(t)t

))
, (2)

where λ is called a deviation decay constant, and determined
the envelope of the VDT circles.

In Fig.3, typical VDT circles are illustrated. The tolerance
decreases as the EV gets closer to its destination B.

A hard constraint on VDT tends to increase energy outage.
Such EVs may drain their batteries before finding a PCS within
their VDT circle. VDT can’t be larger than PDT for an EV.

C. Energy Inefficiency

Energy inefficiency (EI),ρi, of an EV i is defined as the
energy consumption overhead due to a deviation from an
original route. It is upper bounded by 2T

(i)
v (T0)/rAB , where

T0 indicates the time instant the deviation takes place.The
factor of 2 is because of round-trip deviation.

ρi =
∆r

rAB
(3)

≤ 2T
(i)
v (T0)
rAB

.

In the case that an EV can’t move to a PCS due to any
PDT or VDT constraint, a PCS should move towards the EV
to charge it. Early charging is better to lower energy outage,
because the feasible region of an EV determined by the VDT
and PDT shrinks in time. This introduces another factor called
seller virtual distance tolerance (SVDT), T

(s)
v (t). The SVDT

indicates how far a PCS is willing to relocate from its current
position to assist an EV. At this point, it becomes essential to
introduce an incentive mechanism for a PCS to encourage its
movement towards an EV and for the EV to enlarge its VDT.

III. ENERGY INCENTIVE MODEL

Assume that the distance between an EV that wants to buy
EB(x = 0) amount of energy and a seller PCS is d, which is
much longer than the VDTs of both the EV and the PCS, as
illustrated in Fig.4. The shaded region indicates that they are
not located within each others VDT.

Therefore, if the EV is not recharged, energy outage occurs.
To prevent outage, incentives should be given to both the seller
and buyer. In our model, we consider that the price of unit
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energy is Ce and that it is increased by αsCe for a segment of
the normalized distance the PCS traverses towards the buyer
EV. Similarly, the price of unit energy is reduced by αbCe

corresponding to the normalized distance the EV traverses
towards the PCS.

The resulting revenue for the PCS is given by

G(x∗) = (EB(0) + x∗ki)Ce

(
1 +

−αbx
∗ + αs(d− x∗)

d

)
,

(4)
where x∗ ∈ [0, d] denote the location at which the EV and
PCS agree to meet for energy transaction. The seller consumes
energy during relocating itself. The cost of this energy is given
by

Sc(x∗) = (d− x∗)ksCs, (5)

where Cs the price of unit energy the seller pays for, and ks

is the energy consumption per unit distance for the seller. At a
given meeting point x∗, the difference of movement costs for
the seller and buyer is called the relative cost, and it is given
by

∆S(x∗) = G(x∗)− EB(0)Ce − Sc(x∗) (6)

A fair meeting point that results in equal cost burden on the
seller and buyer is called a zero- relative-cost point.

Fig. 4. Illustration of an incentive model in which neither the PCS (seller)
nor the buyer (EV) is greedy. They equally compromise and move towards
each other. EB(x): energy demand of buyer as a function of distance x from
its original location, ES(x): available energy at the seller as a function of x.

It is reasonable to assume that there is a price upper bound
from a buyer’s point of view, and lower bound from the seller’s
point of view. To factor in these bounds, we need to define a
feasible area for both αb and αs.

Proposition: For the price of energy (inclusive of incen-
tives) Ceff to vary within [Ce

2 , 2Ce], αs and αb should satisfy
αs ≤ 1 and αb ≤ 1

2 .
Proof: From (4), the effective energy price Ceff is given

by

Ceff = Ce

(
1 +

−αbx
∗ + αs(d− x∗)

d

)
. (7)

Then, the following condition should be valid.

1
2
≤ 1 +

−αbx
∗ + αs(d− x∗)

d
≤ 2. (8)

For y = x∗
d , (8) is equivalent to − 1

2 ≤ f(y) ≤ 1, where
f(y) = −(αb + αs)y + αs and y ∈ [0, 1]. Note that the
conditions f(0) = αs > 0 and f(1) = −αb < 0 hold for
αs ≤ 1 and αb ≤ 1

2 .
The buyer rejects any arrangement that would require unit

energy price to be higher than 2Ce, and the seller would not
sell energy any cheaper than Ce/2. Request for a price outside
these bounds prevents reaching a consensus, and results in
energy outage for the buyer. The corresponding feasible region
for αb and αs forms a rectangle as shown in Fig.5.

Fig. 5. Feasible region for αb and αs. Inside the feasible region the price
of unit energy after incentives varies between Ce/2 and 2Ce.

On the one hand, the meeting location that would maximize
the seller’s revenue, x∗mr, can be simply computed by solving
∂G
∂x∗ = 0, and is given by

x∗mr = −EB(0)
2ki

+
d(1 + αs)
2(αs + αb)

, (9)

On the other hand, the zero-relative-cost point can be found
by solving ∆S(x∗) = 0 for x∗, which results in a quadratic
equation. A solution that x∗ < 0 is discarded if there is a
single seller and a single buyer, because x∗ ∈ [0, d].

IV. SINGLE BUYER SINGLE SELLER (SBSS) CASE
INCENTIVE ANALYSIS

A. Equal Incentive Case

In the equal incentive case, αb = αs = α. When the seller
and buyer traverse an equal distance towards each other, the
impact of incentives on the energy price is canceled. Note that
while relocating both the seller and buyer consume energy.
Then, a zero-relative-cost point when Ce = Cs and ki = ks

is found as

x∗ei =
d + T

(b)
v − T

(s)
v

2
= d/2, (10)

Note that ∆S(x∗ei) = 0. Factors such as trip delay, service
time and etc would certainly induce additional costs on PCS
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and EV, and impact x∗ei. We ignore such external cost factors
in this paper due to space limitation.

Furthermore, x∗ei may not necessarily be the same as x∗mr.
In Fig.6, the relative cost of movement is given for various
α values. Note that for α = 0.5, the solutions that satisfy
∆S(x∗ei) = 0 are x∗ei = 5 and x∗ei = 10.
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Fig. 6. Numerical analysis of a meeting point at which the relative cost of
movement is zero. In other words, movement costs equally to both the seller
and the buyer. The settings are as follows: ki = ks = 1, Ce = Cs = 1,
EB(0) = 10 and d = 10.

B. B-favored Case

In the b-favored case, illustrated in Fig.7, the buyer EV
is willing to move towards the seller as long as the seller
PCS reduces the unit energy price by αbCe for portion of
the distance d traveled by the buyer. Then, the EV enlarges
its VDT to reach a meeting point. In this case, incentive for
the buyer movement dominates the incentive for the seller
movement. Therefore, αb is higher than αs, and bounds for
a zero-relative-cost point x∗bf conditioned on ki = ks and
Ce = Cs is given by

x∗ei ≤ x∗bf ≤ T (b)
p . (11)

The zero-relative-cost point x∗bf is upper bounded by the
buyer PDT, T

(b)
p . In Fig.8, the relative cost of movement is

shown with αs = 0.2 for αb = {0.3, 0.4, 0.5}. Note that there
is always an x∗bf that is greater than x∗ei.

C. S-favored Case

In the s-favored case, the seller is given more incentive
to approach a buyer. In other words, the buyer is willing to
pay more for unit energy and encourages the seller relocation
towards itself as shown in Fig.9. Thus, αb is smaller than αs,
and the bounds for the zero-relative-cost point x∗sf conditioned
on ki = ks and Ce = Cs is given by

T (b)
v ≤ x∗sf ≤ x∗ei. (12)

Fig. 7. Illustration of an incentive model in which the buyer EV is greedy,
and it forces the PCS to lower its unit energy price. In return, the EV moves
towards to PCS to buy energy.

Fig. 8. Illustration of the relative cost of movement versus meeting points,
when the buyer incentive αb is higher than the seller incentive αs = 0.2.
Other settings are as follows: ki = ks = 1, Ce = Cs = 1, EB(0) = 10
and d = 10.

It is to the benefit of the EV to traverse a distance towards the
PCS by T

(b)
v to reduce G(x∗). Therefore, x∗ is lower bounded

by T
(b)
v .

In Fig.10, the relative cost of movement is shown with αb =
0.2 for αs = {0.3, 0.4, 0.5, 0.6}. Note that there is always an
x∗sf that is shorter than x∗ei.

V. MULTIPLE BUYER SINGLE SELLER (MBSS) CASE
INCENTIVE ANALYSIS

In the multiple buyer case, a seller shall jointly consider
buyer behaviors and the incentives that they can settle for a
meeting point. Let ΩV with cardinality V denote the entire
set of buyer EVs that require energy from a portable charging
station v. The location coordinates of EV i is assumed to be
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Fig. 9. Illustration of an incentive model in which the seller (PCS) is greedy,
and it forces the EV to increase its unit energy purchase price. In return, the
PCS moves towards to EV to sell energy.
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Fig. 10. Illustration of the relative cost of movement versus meeting points,
when the seller incentive αs is higher than the buyer incentive αb = 0.2.
Other settings are as follows: ki = ks = 1, Ce = Cs = 1, EB(0) = 10
and d = 10

known and given by ri = [xi, yi] for i = 1, 2, ..., V and that
of PCS s by rs = [xs, ys].

Assume that there is a zero-relative-cost meeting coordinate
denoted by rmp ∈ <2. Analysis of the SBSS case in the
previous section has reveled that any meeting point equidistant
from both the seller and a buyer is a zero-relative-cost point.
In a two dimensional Euclidian space <2, the set of the zero-
relative-cost points form a line that is orthogonal to the shortest
distance line between the seller and the buyer as shown in
Fig.11. The line segments that fall outside the PDT circle of
the buyer are infeasible, because the buyer simply doesn’t have
enough energy to travel to those locations.

Fig. 11. Illustration of a feasible and infeasible zero-relative-cost line
segments in a 2 dimensional Euclidian space.

In the MBSS case, to determine the globally zero-relative
cost meeting point, a PCS first needs to find the feasible zero-
relative cost line segment with each buyer, and then search for
the intersection of all those segments. Let ΩF with cardinality
F denote a set of meeting point coordinates rmp(f) for f =
1, 2, .., F such that at least two feasible segments cross through
each point. Also, let Ω(f)

I and PI(f) denote a set of buyers to
be served at point rmp(f), and the corresponding profit to be
generated for the seller, respectively. One approach to select a
meeting point is formulated in (13), which is to find the one
that maximizes seller’s profit.

rmp(f∗) = arg max
f∈ΩF

(
G

(
rmp(f)

)− Sc

(
rmp(f)

)
︸ ︷︷ ︸

PI (f )

)
, (13)

where G(rmp(f)) =
∑

i∈Ω
(f)
I

(E (i)
B + ‖rmp(f ) −

ri(f )‖ki)Ce

(
1 + −αb‖rmp(f )−ri (f )‖+αs‖rmp(f )−rs(f )‖

‖rmp(f )−ri (f )‖+‖rmp(f )−rs(f )‖

)

and Sc(rmp(f)) = ‖rmp(f ) − rs(f )‖ksCs . When it is not
possible for all feasible segments to intersect, then to increase
the number of intersecting segments, one available option is
to vary αb and αs, which would jitter the feasible segment
to the left or right of the segment defined for αs = αb (see
Fig.11). In selecting a meeting point, other criteria, which we
don’t discuss in this paper, may include
• Minimizing the number of buyer EVs that would end up

with energy outage.
• When sequentially serving meeting points that encapsu-

late all the buyer EVs, minimizing overall trip duration
or distance to be traversed by the seller.

• Minimizing energy cost for the buyer EVs.
In Fig.12, results from simulation of an MBSS system with

4 buyers and 1 seller is shown together with buyers’ PDT
circles overlaying feasible zero-relative-cost line segments for
each buyer EV and the revenue contour map along the feasible
segments. Energy demands of EVs are randomly generated
from a Gaussian distribution with mean of 30 and standard

5



 

 

10 20 30 40 50 60 70

10

20

30

40

50

60

70

 distance in x−direction

 d
ist

an
ce

 in
 y

−d
ire

ct
io

n

5

10

15

20

25

30

35

40

45

50

EV4

EV1

EV2

EV3
PCS

maximum
revenue
meeting point
with zero
relative cost

Fig. 12. Simulation of the MBSS case with 4 buyers and 1 seller, and
illustration of the resulting globally zero-relative-cost meeting point with the
highest revenue for the seller.Note that αb = αs = 0.4, Ce = Cs = 1 and
ki = ks = 1

deviation of 10 in this particular snapshot. The maximum rev-
enue meeting point with the global zero-relative cost happens
to be at the intersection of the feasible segments of second
and third buyers.

VI. SUMMARY AND CONCLUSIONS

The aim of this paper is to introduce a novel portable
energy distribution management concept and promote research
regarding this exiting field within the energy management
community. First, we have formulated constraints for off-
grid portable EV charging network management with dynamic
pricing, including virtual and physical distance tolerances and
energy inefficiency for energy buyers and sellers. Second, we
have developed an energy incentive model suitable for a single
buyer and single seller (SBSS) case. We have then extended
the model to a multiple buyers single seller (MBSS) case and
provided a formula to determine a meeting point that would
result in maximum profit for the seller by using zero-relative
cost criteria. This research can be easily extended in numerous
directions with various other constraints and criteria that we
haven’t evaluated.

The insight provided in this paper suggests development of
game theory based negotiation strategies among buyers and
sellers particularly in a multiple and buyer multiple seller
(MBMS) case. Cooperation among buyers and its impact on
seller’s pricing strategies is also worth looking into.

It also seems to be essential to incorporate stochastic service
times and waiting delays into the analysis of dense MBMS
networks for practically more valuable learning. Adoption of
queuing theories and development of mobility models for
buyer EVs and sellers will certainly enrich research in this
field.
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