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a contact sensor, and registration of 3D point clouds that were obtained using multi-view
reconstruction of planar city models.
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Abstract. This paper presents a class of minimal solutions for the BB reg-
istration problem in which the sensor data are 3D points aedcorresponding
object data are 3D planes. In order to compute the 6 degffefesemlom trans-
formation between the sensor and the object, we need atsiggsbints on three
or more planes. We systematically investigate and devebsp pstimation algo-
rithms for several configurations, including all minimahfigurations, that arise
from the distribution of points on planes. The degeneratdigarations are also
identified. We point out that many existing and unsolved 2E3D and 3D-to-3D
pose estimation algorithms involving points, lines, arahgls can be transformed
into the problem of registering points to planes. In additimsimulations, we also
demonstrate the algorithm'’s effectiveness in two reallsvapplications: registra-
tion of a robotic arm with an object using a contact sensat,ragistration of 3D
point clouds that were obtained using multi-view recordian of planar city
models.

1 Introduction and previous work

The problem of 3D-to-3D registration is one of the oldest amast fundamental prob-
lem in computer vision, photogrammetry, and robotics, wittmerous application ar-
ease including object recognition, tracking, localizatemd mapping, augmented real-
ity, and medical image alignment. Recent progress in théadoitity of 3D sensors at
reasonable cost have further accelerated the need for sablems. The registration
problem can generally be seen as two subproblems: a corrdspoe problem, and a
problem of pose estimation given the correspondence. Hdttese problems are inter-
twined, and the solution of one depends on the other. Thisagidresses the solution
to both problems, although the major emphasis is on the skaoe.

Several 3D-t0-3D registration scenarios are possible mi#ipg on the representa-
tion of the two 3D datasets: 3D points to 3D points, 3D lineS8@oplanes, 3D points to
3D planes, etc. [1]. For the registration of 3D points to 3Inpx iterative closest point
(ICP) and its variants have been the gold standard in thevastiecades [2, 3]. These
algorithms perform very well with a good initialization. Hee for the case of 3D points
to 3D points, the main unsolved problem is the initial coaeggstration.

The registration of 3D lines to 3D planes and the registretio3D pointswith nor-
malsto 3D planes were considered in [4, 5]. (In this paper, westegi3D points with-
out normals to 3D planes.) Recently, there have been sesgggitration algorithms
that focus on solving both the correspondence and posea&imi4, 6, 7], primarily
by casting the correspondence problem as a graph thedm@tieaThe correspondence
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problem maps to a class of NP-hard problems such as minimutexveover [8] and
maximum clique [9]. In this paper, we address the correspooe problem by formu-
lating it as a maximum clique problem.

The main focus of this paper is on solving for the point-tar@ registration given
the correspondence. Despite several existing results ito3BD registration problems,
the registration of points to planes has received vergléttention. However, in practice
many registration problems can be efficiently solved by falating them as point-to-
plane. Iterative approaches exist for this problem [10]d][1], the authors specifi-
cally mention that their algorithms had difficulties withiptto-plane registration and
pointed out the need for a minimal solution. The minimal Soludeveloped here pro-
vides a clear understanding of degenerate cases of thetpeféane registration.

The development of minimal solutions in general has beerefictal in several
vision problems [11-16]. Minimal solutions have proven ®lbss noise-prone than
non-minimal algorithms, and they have been quite usefutéctice as hypothesis gen-
erators in hypothesize-and-testalgorithms such as RANBAL Our minimal solution
for the point-to-plane registration problem also comesaih additional advantage: it
dramatically reduces the search space in the correspoegeoblem.

To validate our theory we show an exhaustive set of simulatand two compelling
real-world proof-of-concept experiments: registratidraaobotic arm with an object
using contact sensor, and registration of 3D point cloudsiobd using multi-view
reconstruction on 3D planar city models.

Problem statement: Our main goal is to compute the pose (3D translation and 3D
rotation) of a sensor with respect to an object (or objeashich a 3D model con-
sisting of a set of planes is already known. The sensor peswide 3D coordinates of a
small set of points on the object, measured in the sensodowie frame. We are given
N pointsPP, PY, PY, ..., PY from the sensor data and planes/1{, I19, 113, ..., II%,
from the 3D object. We subdivide the original problem intmtsub-problems:

— Compute the correspondences between the 3D points in tlsersdata and the
planes in the 3D object.

— Given these correspondences, compute the rotation anslatam (Rso.,, Ts2.)
between the sensor and the object. We assume that the adbjgdn Ithe world
reference frame, as shown in Figure 1.

In this paper, we explain our solution to the second problposé estimation given
the correspondences) in Section 2 before discussing thesmgamdence problem in
Section 3.

2 Pose estimation

In this section, we develop the algorithms for pose estiomagiven the correspon-
dences between the 3D points and their corresponding plaéles we assume that
the correspondences are already known—a method for congpilne correspondences
is explained later, in Section 3. We systematically conségeeral cases in which we
know the distribution of the points on the planes (how manynisccorrespond to each
plane), developing a customized pose estimation algorftmeach case. We denote
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each configuration aBoints(ay, ag, ..., a,) < Planes(n), wheren = {3,4,5,6} is
the number of distinct planes in which the points lie, ands the number of points
that lie in theith plane. The correspondence between a single point ancha pilél
yield a single coplanarity equation. Since there are 6 unkndegrees of freedom in
(Rs2w, Ts2. ), We need at least 6 point-to-plane correspondences to dudvedse es-
timation problem. There are also degenerate cases in whichréspondences are not
sufficient. Although the individual algorithms for the vauis cases are slightly differ-
ent, their underlying approach is the same. The algorithonsall cases are derived
using the following three steps:

— The choice of intermediate coordinate frames: We transform the sensor and the ob-
ject to intermediate coordinate frames to reduce the degfrée resulting polyno-
mial equations. In addition, if the transformation resirta decrease in the number
of degrees of freedom in the pose between the sensor and,dhjerc the rotation
R and the translatio are expressed using fewer variables.

— The use of coplanarity constraints: From the correspondences between the points
and planes, we derive a set of coplanarity constraints.dsimear system involv-
ing the derived coplanarity constraints, we express thenanwk pose variables in
a subspace spanned by one or more vectors.

— The use of orthonormality constraints. Finally, we use the appropriate number of
orthonormality constraints from the rotation matrix to elebine solutions in the
subspace just described.

2.1 The choice of intermediate coordinate frames

As shown in Figure 1, we denote the original sensor frame (irckvthe points reside)
and the world reference frame (where the planes residej®gnd W?, respectively.
Our goal is to compute the transformatid{.,, Tso.,) that transforms the 3D points
from the sensor framé&? into the world reference frama/°. A straightforward appli-
cation of coplanarity constraints in the case of 6 pointsidoesult in 6 linear equations
involving 12 variables (the 9 elements of the rotation nxaii,,, and the 3 elements of
the translation vectdrI ,»,,). To solve for these variables, we would need at least 6 ad-
ditional equations; these can be 6 quadratic orthononpatihstraints. The solution of
such a system may eventually result in a polynomial equatialegrees4 = 2°, which
would have 64 solutions (upper bound as per Bezout’s thepr@ma the computation
of such solutions would likely be infeasible for many apations.

To overcome this difficulty, we first transform the sensor eald reference frames
S% andW" to two new intermediate coordinate frames, which we SadindV. After
this transformation, our goal is to find the remaining tramsfation(R, T) between
the intermediate reference fram&sand V. We chooseS and )V so as to minimize
the number of variables itR, T) that we need to solve for. A similar idea has been
used in other problem domains [18]. We now define the transditions from the initial
reference frames to the intermediate frames and prove liegettransformations are
always possible using a constructive argument.
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Fig. 1. The basic idea of coordinate transformation for pose esiimalt is always possible
to transform the sensor coordinate system such that a chidpést of points (Pi, P2, Ps) lie
respectively at the origin, on th& axis, and on theX')’ plane. On the other hand, the object
coordinate frame can always be transformed suchlfthatoincides with theY') plane and {I5)
contains theY’ axis.

Transformation from S°to S As shown in Figure 1, we represent thk point inS°
using the notatior?? and the same point i§ using P;. We define the transformation
(Rs, Ts) as the one that results in the poiff3 , P, P;) satisfying the following con-
ditions: (a)P; lies at the origin, (b)P; lies on the positivet’ axis, and (c)P; lies in the
XY plane. Note that the point8° are already given in the problem statement, and the
transformation to the pointB; can be easily computed using the above conditions.

Transformation from W?° to W We similarly represent thih plane inV° using the
notationI? and the same plane W using/l;. We define the transformation as the one
that results in the planed; satisfying the following two conditions: (d); coincides
with the X)) plane, and (bYI, contains theY axis.

Assume that)) and@9 are two points on the line of intersection of the two planes
II9 andI13. Let QY be any other point on the pladg). Let @1, Q2, andQs denote the
same 3D points after the transformation froff to ). The required transformation
(Rw, T,) is the one that maps the triplegd?, Q3, Q9) to (Q1, Q2, Q3). Note that three
points Q! satisfying the description above can be easily determinau the planes
II?, and the transformation from poin¥ to points@, can be computed in the same
way as the transformation described above from paitftso pointsP;.

We denote the 3D points after the transformation as follows:

0 X5 X3 X
P=[0|,Ph=]| 0 |,Ps=|Ys |, andP,= [ Y; | fori={4,5,6}. (1)
0 0 0 Z;

We write the equations of the planes after the transformagfollows:

Z=0:1IL ()
BQY + CQZ =0 : H2 (3)
AX+BY+CiZ+D; =0 : II;, fori = {3,4,5,6} 4)
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Point-to-plane assignmentDepending on the particular configuratiBoints(ay, ..., a, )
— Planes(n) of the points and planes, we choose which sensor pointsspmmel to
each of P, P, ..., and which object planes correspond to eacHief I1, .. ., SO as
to minimize the number of variables in the transformatiotween the intermediate
frames.

In the remainder of this subsection, and in the followingsadtions 2.2 and 2.3,
we explain the method in the context of a particular exammaeely, the configuration
Points(3,2,1) < Planes(3). For this configuration, we may without loss of generality
assume the following correspondences between the poidttharplanes:

II) <= {Py, P>, P3}, Il <= {Py, P5}, II3<={Fs}. 5)

As a result of this assignment, the plane correspondingadhitee pointg Py, Py, P}

and the plandl; are both mapped to th#) plane. The final rotatioiiR) and trans-
lation (T') between the intermediate sensor coordinate fr&hend the intermediate
object coordinate frami’ must preserve the coplanarity of these three points and thei
corresponding plane. Thus, the final transformation canhmsen so as to map all
points on theX'Y plane to points on th&’) plane. In other words, the rotation should
be only along theZ axis and the translation along théand the)’ axes. There are two
pairs of rotation and translation that satisfy this coriatra

Ri1 Ri2 0 Ty Ri1 Ri2 O Th
Ri=| —Ri2R110 ), Ti=|T2|; Re=| Ri2—Ru1 0 |, Ta=|T> (6)
0 01 0 0 0o -1 0

By choosing assignment (5) and separately formulaRingndR,, we have minimized
the number of degrees of freedom to solve for in the transébion between the inter-
mediate frames of reference. Note tiigtandR, are related to each other byl&0°
rotation about thet” axis. Below, we explain the algorithm for solving fef andT' .

2.2 The use of coplanarity constraints

To explain our method’s use of coplanarity constraints (@nidonormality constraints),
we continue with the example of the specific configuraRomts(3, 2, 1) « Planes(3).
We know that the point®, and P; lie on the plandls, whose equation is given by (3).
This implies that these points must satisfy the followinglemarity constraints:

By(—R12X; + R11Y; + To) + C2Z; = 0, fori = {4,5} @)
Similarly, the constraint from the third plaré; is given below:
Az(R11 Xo + Ri2Ys + T1) + Bs(—Ri2 X6 + R11Ys +12) + C3Z6 + D3 =0 (8)
Using the coplanarity constraints (7), (8), we construetfdilowing linear system:

R

BQYZL —B2X4 0 BQ R _C2Z4
BsYs —By X5 0 B T” = —CaZs 9)
AsX¢ + B3Ys AsYs — BsXg As Bs T; —C3Zs — D3

A
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The matrix.A consists of known values and has rahlkAs there are 4 variables in the
linear system, we can obtain their solution in a subspacersgghby one vector:

(Ru R12 T1 TQ)T: (u1 Uz U3 U4)T—|—l1 (1)1 V2 U3 U4)T, (10)

where the values;, v; are known, and; is the only unknown variable.

2.3 The use of orthonormality constraints

We can solve for the unknown variable using a single orthonormality constraint
(R}, + R3, = 1) for the rotation variables.

(ur + llv1)2 + (u2 + llv2)2 =1 (12)

By solving the above equation, we obtain two different Soha fori;. As a result, we
obtain two solutions for the transformatigR,, T;). Since we can similarly compute
two solutions for(Rz, T5), we finally have four solutions fofR, T). Using the ob-
tained solutions fofR, T'), the transformation between the original coordinate frame
(Rs2w, Ts2,,) can be easily computed.

Visualization of the four solutions: There is a geometric relationship between the
multiple solutions obtained for the transformatidh T'). For example, in Figure 2(a),
we show the four solutions derived above, for a special aasehich the 3 planes are
orthogonal to each other. All of the solutions satisfy thmeaset of plane equations,
but they exist in different octants. Every solution is jusbéation of another solution
about one of the three axes b§0°. If we slightly modify the planes so that they are no
longer orthogonal, the different solutions start to driftey from each other.

2.4 Other variants

The example shown above is one of the easiest point-to-piggigration algorithms to
derive. Several harder configurations also arise from th&idution of 6 (or more) dis-
tinct points on 3 or more planes (see Table 1). We have soley ease using the same
intermediate transformation technique described abolleofAhe different scenarios,
the corresponding assignments of points and planes, andutinder of solutions are
summarized in Table 1.

The key to solving each configuration is to determine a ptafiane assignment
that minimizes the number of variables appearing in thesf@mation(R, T') between
the intermediate frames. In general, such an optimal assghcan be found by consid-
ering different point-to-plane assignments and checHKirgresulting coplanarity con-
straint equations for the 6 points and their correspondiaggs. For example, in the
configurationPoints(3, 2, 1) < Planes(3), the point-to-plane assignments given in (5)
minimize the number of unknowns in the equations (6)(RwT). Please see the Sup-
plementary Materials for details of various configuratisnsnmarized in Table 1.
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Table 1. Point-to-plane configurations and their solutions.

Each row of the table presents a different configuration,hiictvr, denotes the number of distinct
planes and each; refers to the number of points that lie in theh plane. The first two rows
show the degenerate cases for which there is an insufficilenbar of points or planes. The next
four rows consider non-minimal solutions using more tharoBs. The remaining rows show
several minimal configurations (each using exactly 6 ppiftee number of solutions is given,
followed by the average number of real (non-imaginary) sohs in parentheses based on 1000
computations from the simulation described in Section bcBssing time was measured using a
MATLAB implementation on a 2.66 GHz PC; the symboindicates the use of Groebner basis
methods [19]. The Supplementary Materials explain thevd&dns of the various configurations.

- #of Process

‘ n {(a1,...,an) Assignment ‘SolutionJime (mseL)
<3 — - degenerafe —

n| >Ya <6 - degenerafe —

3 (3,3,3) 11, C{Pl,Pz,P3},H2C{P4,P5,P5},H3C{P7,P8,Pg} 2(2) 5

3 (3,3,2) 11, <:{P1,P2,P3},H2 <:{P4,P5,P6},H3 <:{P7,P8} 2(2) 5

3 (3,3,1) I, < {Pl,Pz,Pg},Hz = {P4,P5,P5},H3 = {P7} 2(2) 5

3 (3.2,2) I < {P\, Py, P}, 1T, < {Py, Ps5}, IIs <= {Ps, Pr} 22 5

3 (4,1,1) - degenerate  —

3 (3,2,1) 11, <:{P17P2,P3},H2 <:{P4,P5},H3 <:{P()} 4(4) 6

3 (2,2,2) I, < {Ps, PG}, I, < {Pg, P4}, I3 < {Pl, P2} 8(44) ].4@L

4 (3,1,1,1) I, < {Pl,Pz,Pg},Hz <~ {P4},H3 = {P5},H3 = {Pe} 4(28) 6

4 (2,2,1,1) II, < {Ps,Ps}, Il <= {P3, Py}, I3 <= {P>2},II, < {P,} | 8(3.6) 1407

5| 211,11 IT, < {Ps, Ps}, IT; < {Ps_:},i={3,4,5} 16 (5.8)| 4100

6 | (1,1,1,1,1,1) II; < {Po_it1},i={1,2,3,4,5,6} 16 (5.8)| 1200

Special casedf the points lie on the boundaries of the planes (i.e., eyaint lies on
two planes), then 3 points are sufficient to compute the pdsareful analysis shows
that this problem is nothing but a generalized 3-point pasienation problem [20].

Degenerate casesTable 1 includes several degenerate cases based on the mofmbe
points and planes. In addition, degeneracies can occudb@s¢he geometry of the
planes. In the case of 3 planes, if hie 3 matrix consisting of all three normals has rank
less than 3 (e.g., if two of the three planes are parallg,dtdegenerate configuration.

3 The correspondence problem

In the previous section, we assumed that the point-to-glamespondences were known.
In this section, we briefly describe a method to compute tlvesespondences. The
basic idea of the correspondence problem and the geometoinatraints involved in
identifying feasible correspondences are explained imaibgt [5] using an interpre-
tation tree approach. The same problem can also be forndudetegraph-theoretical
problems such as independent set, vertex cover and maxirigue ¢5, 8, 9].

Our goal in this section is to compute all of the feasible niagp (possible assign-
ments) between the 3D points in the sensor domain and plarthe iobject. Feasible
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Fig. 2. (a) Right Visualization of 4 solutions for the points lying on 3 ortlwr@l planesLeft:
Correct solution. (b) The problem of finding correspondanisetween clusters of points; and
planesII;. (c) This can be formulated as a maximum clique problem. Humte x;; in this
graph represents a mapping between cluteand planell;. An edge between two nodes is
a consistency edge, signifying that both of these mappiagsaccur simultaneously without
conflicting with the three constraints given in [5].

mappings refer to correspondences that satisfy the manyeical constraints aris-
ing from the angles between the normals, pairwise distaretes[5]. Although such
constraints do not always guarantee the correctness of #ppimgs, a wrong corre-
spondence seldom exists satisfying all the constraintadttition, since we use them
in hypothesize-and-test algorithms such as RANSAC, asthian be detected and re-
moved.

In what follows, we briefly explain our approach using the imaxm clique problem
formulation. First, we cluster the points from the sensdo iseveral planes, denoting
theith cluster ag’;. Note that each cluster may contain multiple points or evsh g
single point. As shown in Figure 2(b), our goal is to map thelssters to the corre-
sponding planes/; in the object. In order to do this, we construct a graph as show
in Figure 2(c). Every node in this graph; represents a mapping between the cluster
C; (from the sensor) and the plaig (from the object). An edge betweer; andzy,
is referred to as a consistency edge that signifies that betetmappings can occur
simultaneously without conflicting with the three congtiaigiven in [5]. The feasible
correspondences between points and planes can be obtairiedibg the maximum
clique in the graph. A maximum clique for a graph refers toltrgest subset of nodes
in which each pair of nodes in the subset is connected by ae. éaithe graph we con-
structed, finding a maximum clique provides us a set of mayspim which all possible
pairwise consistencies are satisfied.

Several techniques can be used to solve these NP-hard pro[8e7]. Since we use
minimal approaches for our applications, we are not inteck® the correspondences
for all of the points in the registration problem. Insteads are concerned with iden-
tifying a small number of point-to-plane correspondensesficient to resolve issues
from degeneracies and outliers). In fact, one of the mairaathges of the proposed
minimal solution is that it only requires correspondenaessf small number of points.
This enabled us to use a simple tree-based search for findingpaximum cliques in
the real-world experiments described in Section 5.
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Fig. 3. A general framework to transform a given registration pesblto a point-to-plane prob-
lem. Left: In the sensor data, we transform all geometrical entitiesnfg, lines and planes) to
points. A point is preserved as a point. In the case of linespanes we sample two and three
arbitrary points, respectivel\Right: In the object data, we convert all geometrical entities to
planes. A plane is preserved as a plane. Points and linesasaenpterized using 3-plane and
2-plane representations, as shown.

4 A General Framework for Pose Estimation

We briefly sketch a unified pose estimation framework for n&i3tto-3D and 3D-to-
3D registrations by first transforming the given problem fmoént-to-plane registration
problem. Several 2D-t0-3D pose estimation algorithms Hmeen proposed in the lit-
erature [6,18,10,1, 21,5, 4, 20]. All of these pose estiomatilgorithms involve the
registration of one set of geometrical entities (pointsed, or planes) to another. For
example, in the case of generalized pose estimation, wstegghree 3D points to the
corresponding non-parametric projection rays from the @@ to compute the pose
of the object with respect to the camera [20]. In the case 6f@BD pose estimation
using three lines, we can look at this problem as a registraif three interpretation
planes (each formed by two projection rays corresponding single line) on three
lines [18]. In the case of 3D-to-3D line-to-plane registrat we register lines from the
sensor data to planes from the object [4]. In the case of 3BEXgoint-to-point regis-
tration, we register points from sensor data to points indhject [6]. One could also
propose registration algorithm involving mixture of gedneal entities and thereby we
could have more than 20 2D-to-3D and 3D-to-3D registratenarios. We emphasis
that any of these pose estimation algorithms involving aamlgination of geometrical
entities to any other combination could be transformed toiatpo-plane registration
algorithm and solved using the following simple algorithm.

1. In the sensor data, we transform all the geometricaliestiipoints, lines and
planes) to points. This is done using 2-point and 3-pointesgntation of lines
and planes respectively as shown in Figure 3.

2. In the object data, we transform all the geometrical Exstito planes. This is done
by 3-plane and 2-plane representations for points and,lmespectively. Note that
the 3 planes passing through a point need not be orthoganzla8y, we use 2
non-orthogonal planes to represent a line. The appropctadéce of these planes
plays a crucial role in obtaining an efficient pose estimattgorithm.

3. After these transformations, we can use our point-towplagistration algorithm.

Details of the proposed generalized framework are givehér8upplementary Ma-
terials with examples on several registration problems.
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Fig. 4. Rotation and translation error for simulation data as a tiencof the level of noise in
the test set. The noise standard deviation is expressed @senpage of the size of the object.
The legends list the configurations in order of decreasingr.gfa,b) Results from our algorithm
for all non-degenerate configurations shown in Table 1. Nb&t minimal solutions using 6
points provide lower errors than non-minimal solutionsd aolutions for configurations with
larger number of planes have lower errors. (b—j) Our minisw@ltions compared to least square
methods (using 12 and 20 points) for the same number of planésd)n = 3, (e,)n = 4,
(g,h)n = 5, and (i,j)n = 6. Note that in the 3-plane case (b), least square methodsletatyp
fail due to rank degeneracy.

5 Experimental Results

Simulations: We analyzed the performance of our minimal solutions in $tions by
generating 32 random planes inside a cube of side length Ai@ We randomly sam-
pled 320 points on these planes within the cube. A test setreased by transforming
all 320 points using a ground-truth rotation and transtattben adding Gaussian noise
to each point.

We randomly selectek points from the test set according to the point-to-plane con
figuration of the algorithm, then computed the rotation aadglation using the points
and the corresponding planes. The estimated transformatis then evaluated by us-
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CAD model
/gf the object

(b)

Fig. 5. Real-world experiment with a 6-degrees-of-freedom rabatim. (a) 3D contact position
data were collected for 100 points on the surface using @-ipudontact detection function and
built-in encoders of the robotic arm. (b) Plane fitting of 812 points and the correspondences of
the points to the planes in the CAD model using the method cfi@e3.

ing it to transform the otheB20 — k points and computing the mean point-to-plane
distance between the transformed points and their cormotsponding planes. Each
trial consists of generating a test set, then repeatingateeison ofk points and trans-
formation estimation 100 times for this test set. Of the lt#sy 100 transformations,
the solution for the trial is the one transformation thatyiles the minimum mean
distance.

Figure 4 plots errors in estimated rotation and translatih varying noise levels.
For each configuration, the errors plotted are the avera@®®ftrials. For each number
of planes { = 3,4,5,6), we compare our minimal solutions for every possible con-
figuration of 6 points (as well as the non-minimal configuras for 3 planes that were
included in Table 1) to a least-squares solution for the saomber of planes using
12 or 20 points without orthonormality constraints. In abkes, our minimal solutions
yield smaller errors than the least squares method. Notehbdeast squares method
completely fails in the case of three planes. Thus, our foaisation is useful not only
for the minimal configurations but also in non-minimal configtions such a3, 3, 3).

Contact Sensor: The first experiment, shown in Figure 5, was conducted usifig a
degree-of-freedom robotic arm with a built-in contact @éten function. We used as
the target object a partial surface of an icosahedron, o€lwfour of the 20 faces are
measurable, as shown in Figure 5. The robot automaticallsomed 100 points (con-
tact positions) on the surface; each point was measured siynfioving the probe to
a randomz, y position and then moving down towards the surface (in theatieg)>

direction) until it sensed a contact. We clustered the aiising a simple RANSAC-
based plane fitting algorithm. There were four main clustersesponding to the four
planes of the icosahedron used in the experiment. Next, #thod described in Sec-
tion 3 was used to find the correspondences between theserslaad the planes in the
3D model. Given these correspondences, we applied our-pwiplane algorithm using
several of the minimal 3-plane and 4-plane configuratiorssirAthe simulations, we
repeated the following process to determine the solutiandomly selecting: points,



12 Srikumar Ramalingam, Yuichi Taguchi, Tim K. Marks, Ontakel

(b) (©

Fig. 6. (&) An input stereo pair of photos taken in Boston’s finandiatrict, overlaid with the
points that we matched and reconstructed in 3D. (b) We if§efiatiir clusters in the reconstructed
3D points (a single point and three planar clouds of poinss)gia plane-fitting algorithm. (c)
The four planes in the 3D city model corresponding to thetified clusters shown in (b).

solving for the transformation, and evaluating the meatadise of the transformed re-
maining points to the 3D model. The final point-to-planeatiste error for all of the
inliers was abou8% of the overall size of the scene. The least squares methied fai
completely for the 3-plane case (similar to the results shimiFigure 4). In the 4-plane
case, the least-squares error was about 10 times largethikagrror of the minimal
solutions.

Registration of 3D point clouds to polyhedral architecturd models: Given a plane-
approximated coarse 3D model of the city of Boston obtainechfa commercial web-
site (http://www.3dcadbrowser.com/), we performed laalon within the map using
a pair of images of a scene in Boston’s financial district. Béat 3D points from
the image pair, we matched Harris features and applied atdrstiucture-from-motion
algorithms.

Using a RANSAC-based plane fitting algorithm, we fit planeth®reconstructed
3D points. We computed 3 planes from the reconstructed passhown in Figure 6.
A coarse initialization is manually provided and the netiptanes in the 3D model
are identified. All of the planes shown in Figure 6(c) (morartii0 planes) were used
from the 3D model of Boston. Using the method described iri®e8, we obtained the
correspondences between four clusters (a single pointeiad planar clouds of points)
and four planes in the 3D model. The plane correspondinga@tbund had only one
3D point due to occlusion from pedestrians and cars. (Nateitkvas important to have
at least one point on the ground in order to determine thécagttanslation.) Applying
our minimal algorithms for the 4-planes case yielded rasuith an error of jus0.05%
of the overall size of the scene.

Our point-to-plane registration algorithm can also be ufsednerging partial re-
constructions obtained from multi-view reconstructionheiques [22, 23], as shown
in Figure 7. In order to obtain a 3D model from 30 images, wedstitde the images
into two clusters of 15 images each. We reconstruct 3D pdouds from each im-
age cluster and use the superpixel segmentation of a conmmengei to register them.
The 3D points from the first cluster are reprojected onto tipgespixel image and used
to compute the plane parameters for each superpixel. (Warete superpixels with
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(b)

Fig. 7. Registering two point clouds, each generated by applyintji+view reconstruction tech-
niques to 15 imagega) One of the images used in 3D reconstructif).superpixel segmenta-
tion of the image shown in (ajc) The 3D points from the first (blue) and second (red) clouds
are reprojected onto the superpixel image. The points ftwrfitst point cloud are used to com-
pute the superpixel plane parameters, while the second ploind is preserved as points. The
correspondence between the points from the second cloutharplanes obtained from the first
cloud are determined by the underlying superpixd). 3D model after merging the two partial
reconstructions from the two cluster&¢st viewed in colot

insufficient or non-planar points.) The superpixel segragon of the common image
gives us the correspondences between the points in the detuster and the planes
obtained from the first cluster. We obtain the 3D registratising a RANSAC frame-

work, in which we select three or more non-degenerate plé®es section 2.4) and the
corresponding minimum number of points.

Previous work merging partial 3D models obtained multwigD reconstruction
has used non-minimal iterative approaches [24]. Howewéralizing with a minimal
solution, such as the one described here, may be criticaldisly 3D data. In addition,
there are two general advantages of point-to-plane rattzar point-to-point registra-
tion: (1) accuracy [25], (2) compact representation of tBer8odels (about a million
3D points are represented using few hundred superpixeép)an

6 Discussion

The development of minimal algorithms for registering 3Drpeto 3D planes provides
opportunities for efficient and robust algorithms with widpplicability in computer
vision and robotics. Since 3D sensors typically do not peecihe boundaries of objects
in the same way as 2D sensors, an algorithm that can work witttgon the surfaces,
rather than surface boundaries, is essential. In texsse3® models, for example, it
is easier to obtain point-to-plane correspondences than-pmpoint and line-to-line
correspondences.

Acknowledgments:We would like to thank Jay Thornton, Keisuke Kojima, JohnrBar
well, and Haruhisa Okuda for their valuable feedback, halp support.
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