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Abstract—Timer-based mechanisms are often used in several
wireless systems to help a given (sink) node select the best
helper node among many available nodes. Specifically, a node
transmits a packet when its timer expires, and the timer value is
a function of its local suitability metric. In practice, the best node
gets selected successfully only if no other node’s timer expires
within a ‘vulnerability’ window after its timer expiry. In this
paper, we provide a complete closed-form characterization of the
optimal metric-to-timer mapping that maximizes the probability
of success for any probability distribution function of the metric.
The optimal scheme is scalable, distributed, and much better than
the popular inverse metric timer mapping. We also develop an
asymptotic characterization of the optimal scheme that is elegant
and insightful, and accurate even for a small number of nodes.

I. INTRODUCTION

Selection is an attractive solution that has been proposed
in many wireless communication schemes. For example, in
cooperative communication systems, it helps exploit spatial
diversity and avoids synchronization problems among multiple
transmitting relays [1]–[6]. In cellular systems that exploit
multiuser diversity, the base station transmits to the mobile
station with the highest instantaneous channel. Selection finds
applications in sensor networks [5], [7], [8] and vehicular
ad-hoc networks (VANETs) [9], [10]. By accounting for the
average throughput or average energy consumed, even fairness
in selection can be ensured [11], [12].

Common to all the above systems is the following abstrac-
tion: each node i maintains a local suitability metric μi, and
the system attempts to select the ‘best’ node with the highest
metric. The mechanism that physically selects the best node is,
therefore, an important component in many wireless systems.
We consider a timer-based mechanism in this paper, which
is popular because of its simplicity and distributed nature. It
requires no feedback during the selection process. Each node
sets its timer as a function of its metric value such that the
timer of the node with the best metric expires the earliest. The
timer mechanism is markedly different from the centralized
polling mechanism, in which the sink polls each node about
its metric and then chooses the best one, and from distributed
splitting algorithms, which require slot-by-slot feedback [13],
[14].

Ad hoc timer schemes have been proposed in the literature
in [7], [15]. In [15], the timer is set as c/μ, where c is a
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constant. In [7], a piecewise linear function is used. In general,
to ensure that the best node transmits first, the mapping is a
deterministic monotone non-increasing function [7], [15]. In
general, the timer scheme works by ensuring that the best node
transmits first. However, for successful selection in practical
systems, it is necessary that no other timer expires within a
time window, called the vulnerability window Δ [16], of the
expiry of the best node’s timer. Otherwise, a selection failure
occurs since two or more packets collide at the receiver. While
scaling the timer values and increasing the total selection
duration reduces the collision probability, it is undesirable
because it reduces the time available to the selected node
to transmit data. It also reduces the ability of the system to
handle larger Doppler spreads. Therefore, optimizing over the
mapping itself so as to maximize the probability of selection
of the best node given Tmax and Δ is a problem of significant
theoretical and practical interest.

In this paper, we consider the most general timer scheme
in which the metric-to-timer function is monotone non-
increasing, and provide a complete characterization of the
optimal mapping in terms of Tmax and Δ. We show that
to maximize the probability of selecting the best node, the
nodes transmit only at finite discrete time instants, viz.
{0,Δ, . . . , NΔ}, where N =

⌊
Tmax

Δ

⌋
and �.� is the floor

function. We then provide a complete characterization of the
timer scheme that specifies which node should transmit when.
An expression for the optimal probability of success is also
derived. In the asymptotic regime, where the number of nodes
is large, we show that the characterization of the optimal
scheme simplifies considerably. We show that the optimal
scheme performs substantially better than the ad hoc mappings
used in the literature, and is easy to implement in practice.
Our results hold for all real-valued metrics with arbitrary
probability distribution functions.

The paper is organized as follows. The system model
and the general timer scheme are described in Sec. II. The
optimal scheme is characterized in Sec. III. Section IV presents
numerical simulations and comparisons, and is followed by our
conclusions in Sec. V. The Appendix shows the key steps in
the proofs; detailed proofs are available in [17].

II. TIMER-BASED SELECTION: SYSTEM BASICS

We consider a system with k nodes and a sink as shown in
Figure 1. The sink represents any node that is interested in the
message transmitted by the k nodes; it need not conduct any
coordinating role. Each node i possesses a suitability metric
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Fig. 1. A system consisting of a sink and k nodes. Each node has a metric
μi and sets its timer as Ti = f(μi). The sink needs to select the node with
the highest metric.

μi that is known only to that specific node. The metrics are
assumed to be independent and identically distributed across
nodes. The probability distribution is assumed to be known by
all nodes. The aim of the selection scheme is to make the sink
determine which node has the highest μi, which we henceforth
call the ‘best’ node.

Each node i, based on its local metric μi, sets a timer
Ti = f(μi), where f(.) is called the metric-to-timer function.
When the timer expires (at time Ti), the node immediately
transmits a packet to the sink. As mentioned, f(μ), in general,
is a monotone non-increasing function to ensure that the
best node’s timer expires first. The selection process has a
maximum selection duration, Tmax, after which nodes do not
start a transmission.

The sink can decode the packet from the best node, if the
timers of the best and second best node, denoted by T(1)

and T(2) respectively, expire such that T(2) − T(1) ≥ Δ.
The expiry of timers of other nodes, which occurs after T(2),
does not matter since the sink is only interested in the best
node. The value of Δ depends on system capabilities. For
example, Δ typically includes the maximum propagation and
detection delays between all nodes. Carrier sensing is optional
but beneficial; if it is not used, Δ needs to include maximum
transmission time of packets. Δ may also include the receive-
to-transmit switching times in half-duplex nodes [15].

Henceforth, we will abuse the above general definition of
Δ and will say that a collision occurs when the timers of the
best and the second best nodes expire within a duration Δ.
Thus, the best node is selected successfully if T(1) ≤ Tmax

and T(2) − T(1) ≥ Δ. Otherwise, the selection process fails.

A. Discussion: Alternate Models and Extensions

In this paper, an inability to select the best node is treated
as a failure or an outage. In fact, if a sink is available, it
may respond to a selection failure in multiple ways. For
example, it may resolve the nodes whose packets collided
during the selection process, using extra feedback. If a sink
is not available, then repeated transmission can be used to
improve the overall reliability of broadcast messages. The
details of how the system deals with a selection failure are
beyond the scope of this paper.

In addition to maximizing the probability of successful
selection, one can also choose to minimize the expected time

taken by the selection scheme to stop. The latter, in the
presence of a constraint on the probability of success, is char-
acterized in [17]. The scheme considered in this paper, which
maximizes the probability of success, provides a feasibility
criterion for the above scheme.

To keep notation simple, we first consider the case where
the metrics are uniformly distributed over the interval [0, 1).
Thereafter, the results are generalized to all real-valued metrics
with arbitrary probability distribution functions.

III. OPTIMAL TIMER SCHEME’S STRUCTURE

We first consider the case where each metric is uniformly
distributed between 0 and 1. This is generalized to metrics
with arbitrary probability distribution functions in Sec. III-B.

We shall use the following notation henceforth. E [X] de-
notes the expected value of a random variable (RV) X . Using
order statistics notation, the node with the ith largest metric is
denoted by (i). Consequently, μ(1) ≥ μ(2) ≥ · · · ≥ μ(k) and
T(1) ≤ · · · ≤ T(k). For notational convenience, the summation∑l2

l=l1
equals 0 whenever l1 > l2. We use the superscript ∗ to

denote an optimal value; for example, optimal value of x is
x∗. Pr (A) denotes the probability of an event A, and Pr (A|B)
denotes the conditional probability of A given B.

The following lemma shows that an optimal f∗(μ) maps
the metrics into discrete timer values. Let N =

⌊
Tmax

Δ

⌋
.

Lemma 1: An optimal metric-to-timer mapping f∗(μ) that
maximizes the probability of success within a maximum
time Tmax maps μ into (N + 1) discrete timer values
{0,Δ, 2Δ, . . . , NΔ}.

Proof: The proof is given in Appendix A.
Note that the above discrete mapping, while optimal, need

not be unique. Intuitively, this result seems to be in sync
with the fact that time slotted multiple access protocols have
better throughput than the unslotted ones. However, there is an
important difference. While time slotting reduces the vulner-
ability window in multiple access protocols, in our selection
problem the vulnerability window remains unchanged.

Implications of Lemma 1: We have reduced an infinite-
dimensional problem of finding f(μ) over the space of all
positive-valued monotone non-increasing functions to one over
just N + 1 real values that lie between 0 and Tmax, as
illustrated in Figure 2. Only the contiguous metric intervals
in [0, 1) that get assigned to the timer values 0,Δ, . . . , NΔ
remain to be determined. As shown in Figure 2, all nodes
with metrics in the interval [1 − αN [0], 1), of length αN [0],
set their timers to 0. Nodes with metrics in the next interval
[1 − αN [1] − αN [0], 1 − αN [0]), of length αN [1], set their
timers to Δ, and so on. In general, nodes with metrics in
the interval

[
1 − ∑i

j=0 αN [j], 1 − ∑i−1
j=0 αN [j]

)
, of length

αN [i], set their timer to iΔ. Any node with metric less than(
1 − ∑N

j=0 αN [j]
)

does not transmit at all.

The following theorem provides optimal values for αN [i],
for 0 ≤ i ≤ N , and, thus, along with Lemma 1 provides a
complete characterization of the optimal scheme. Let N =⌊

Tmax
Δ

⌋
.
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Fig. 2. Illustration of the optimal metric-to-timer mapping f∗(μ). A user
with metric in the interval [1 − αN [0], 1) transmits at time 0, a user with
metric in the interval [1−αN [0]−αN [1], 1−αN [0]) transmits at time Δ,
and so on. Users with metrics less than 1 − ∑N

i=0 αN [i] do not transmit.

Theorem 1: The probability of selecting the best node
among k nodes, subject to a maximum selection duration of
Tmax, is maximized when the metric-to-timer mapping is

f∗(μ) =

⎧⎪⎨
⎪⎩

iΔ, 1 − ∑i
j=0 α∗

N [j] ≤ μ <

1 − ∑i−1
j=0 α∗

N [j], for 0 ≤ i ≤ N

Tmax + ε, otherwise
,

(1)
where ε is any arbitrary strictly positive real number. The N+1
interval lengths α∗

N [0], . . . , α∗
N [N ] are recursively given by

α∗
N [j] =

{
1−P∗

N−1
k−P∗

N−1
, j = 0

(1 − α∗
N [0]) α∗

N−1[j − 1], 1 ≤ j ≤ N
, (2)

where α∗
0[0] = 1/k. P ∗

N is the maximum probability of success
and is given by

P ∗
N = k

N∑
l=0

α∗
N [l]

⎛
⎝1 −

l∑
j=0

α∗
N [j]

⎞
⎠

k−1

. (3)

Proof: The proof is given in Appendix B.
The discrete nature of the optimal scheme also makes it

amenable to practical implementation since each node only
needs to store an unwrapped version of the above recur-
sion in the form of a lookup table that has N + 1 entries
{α∗

N [0], . . . , α∗
N [N ]}. Notice that the interval lengths depend

on k. Such a dependence is also characteristic of splitting-
based selection schemes [13], [14].

A. Asymptotic Analysis of Optimal Scheme as k → ∞
We now provide asymptotic expressions for the optimal

timer scheme as the number of nodes k → ∞. The maximum
selection duration, Tmax, or equivalently N , is kept fixed. As
we shall see, the recursions simplify to a simple and elegant
form. This is because in the asymptotic regime, a scaled
version of the metric follows a Poisson process [18].

From (2), it can be seen that α∗
N [j] tends to zero as k → ∞.

Therefore, for node i, consider a scaled metric yi = k(1−μi),
and normalize the interval lengths to

β∗
N [j] = kα∗

N [j]. (4)

Thus, selecting a node with the highest μi is equivalent to
selecting the node with the lowest yi. Let y(1) ≤ y(2) ≤ · · · ≤
y(k) denote an ascending ordering on the yis. Define the point
process M(z) � sup

{
k ≥ 1 : y(k) ≤ z

}
. M(z) is simply the

number of nodes whose yi = k(1 − μi) is less than z.
Lemma 2: M(z) forms a Poisson process as k → ∞.

This result enables the following use of the independent
increments property of Poisson processes [18, Chp. 2], which
states that the number of points that occur in disjoint intervals
are independent of each other.

Theorem 2: The optimal β∗
N [j] that maximize the proba-

bility of success are given by

β∗
N [j] =

{
1, j = N

1 − e−β∗
N [j+1], 0 ≤ j ≤ N − 1

. (5)

Also, the optimal probability of success is P ∗
N = e−β∗

N [0].
Proof: The proof is omitted to conserve space and is given

in detail in [17].
Theorem 2 leads to several key insights about the optimal

timer scheme, which are formally stated as corollaries below.
Corollary 1 (Scalability): Even when k → ∞, P ∗

N ≥ 1/e,
with equality occurring only for N = 0.

Corollary 2 (Independence): β∗
N [N − r] depends only on

r, and is independent of N .
Corollary 3 (Monotonicity): β∗

N [0] < · · · < β∗
N [N ].

The monotonicity property can be intuitively understood as
follows. As the time available decreases, the risk of selection
failure due to the best node not transmitting increases. This is
counteracted by increasing the risk of collision.

B. Extension to Arbitrary Real-Valued Metrics

We now generalize the optimal solution to the general
case where the metric is not uniformly distributed. Let the
cumulative distribution function (CDF) of a metric be denoted
by Fc(x) = Pr (μ ≤ x), where −∞ < x < ∞.

The optimum mapping when the CDF of the metric is Fc(.)
is f∗ (Fc(μ)), where f∗(.) is given by Theorem 2. This follows
because Fc(.) is a monotonically non-decreasing function,
and the RV Y = Fc(μ) is uniformly distributed between 0
and 1.1 The problem has, therefore, been reduced to the one
considered earlier. This also shows that the performance for
the optimal mapping does not depend on Fc(.). Note here that
we assume that the nodes know Fc(.), as was also assumed
in [13], [14]. Practically, this is justified because Fc(.), being
a statistical property, can be computed over time.

IV. RESULTS AND PERFORMANCE EVALUATION

We now study the performance of the optimum timer
scheme. We also compare it with the popular inverse metric
timer mapping that uses f(μ) = c/μ [2], [3], [15], [19].2 In

1The CDF needs to be continuous to ensure this. The case where the CDF is
not continuous can be easily handled by a technique analogous to proportional
expansion that was proposed in [14] for splitting algorithms. In it, each node
generates a new continuous metric such that at least one of the nodes with
the highest metric still remains the best node.

2We do not plot the piece-wise linear mapping of [7] because its perfor-
mance needs to be numerically optimized over several parameters.



order to ensure a fair comparison with the optimal scheme, we
optimize the inverse timer scheme as well. For each pair of
Tmax and k values, the value of c that maximizes the probabil-
ity of success is numerically determined from extensive Monte
Carlo simulations. Since it also depends on Fc(.), we show
results for the following two metric distributions: (i) A unit
mean Rayleigh distribution with CDF Fc(μ) = 1 − e−μ2/2,
and (ii) A unit mean exponential distribution with CDF
Fc(μ) = 1 − e−μ.

Figure 3 plots the maximum probability of success, P ∗
N , as a

function of N =
⌊

Tmax
Δ

⌋
. Also plotted are results from Monte

Carlo simulations, which match very well with the analytical
results. Notice that the asymptotic curve is close to the actual
curve even for k = 5. The asymptotic curve shows a rather
remarkable result: regardless of k and without the use of any
feedback, the best node gets selected with a probability of
over 75% when N is just 5. When N increases to 17, the
success probability exceeds 90%. N = 17 may seem like a
large number compared to the 2.467 time slots required on
average by the splitting algorithm to select the best node [13],
[14]. However, the slot duration in the splitting algorithm is
much larger than Δ because of the slot-by-slot transmission
and feedback required by the splitting algorithm. A detailed
comparison based on the IEEE 802.11 standard’s parameters
shows that a slot in the splitting algorithm can be eleven times
larger than Δ [17].

Also plotted in Figure 3 are the results for the inverse timer
mapping scheme, when c optimized for each parameter set
and when c is kept fixed. We see that the optimal scheme
significantly outperforms the inverse metric mapping, even
when the latter’s parameters are optimized. For example, for
N = 10 and N = 30, the probability that the system fails to
select the best node for the inverse timer scheme is respectively
3.4 and 5.0 times greater than that of the optimum scheme for
the Rayleigh CDF. The factors increase to 3.7 and 7.2 for the
exponential CDF. Interestingly, even though the exponential
RV is a square of the Rayleigh RV and the squaring operation
preserves the metric order, the performance of the inverse
timer scheme changes.

The optimal scheme’s parameters are studied in Figure 4,
which plots α∗

N [j] for N = 10 when the metric is uniformly
distributed between 0 and 1. (The parameters for arbitrary
distributions can be obtained using Sec. III-B.) We see that
α∗

N [j] increases with j, which is in line with Corollary 3.

V. CONCLUSIONS

We considered a distributed timer-based selection scheme,
in which each node maps its priority metric to a timer value,
and transmits when its timer expires. It works by ensuring
that the best node’s timer expires first. We showed that the
optimal mapping that maximizes the probability of selection
maps the metrics into N +1 discrete timer values, where N =
�Tmax/Δ�. Thus, a smaller vulnerability window Δ or a larger
maximum selection duration Tmax improves performance.

In the asymptotic regime, where the number of nodes is
large, the occurrence of a Poisson process led to a consid-
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erably simpler characterization of the optimal scheme. The
optimal schemes’ performance was significantly better than the
inverse metric mapping. Unlike the latter mapping, the optimal
mapping’s performance did not depend on the probability
distribution of the metric.

The optimal timer in view of its scalability and superior
performance is likely to find applications in several areas.
Examples of these include cooperative systems that need to
find the best relay node [2], [15], wireless network coding to
find the best relays that will combine the signals transmitted
by multiple sources [19], mobile multi-hop networks [6],
VANETs to determine which vehicle should rebroadcast an
emergency message [9], [10], wireless local area networks [20]
to enable opportunistic channel access, and sensor networks
to improve network lifetime [3], [7].

APPENDIX

Given the space constraints, the key steps in the proofs are
highlighted below. Detailed proofs are given in [17].



A. Proof of Lemma 1

The key idea behind the proof is to successively refine f(.),
by making parts of it discrete, and show that this can only
improve the probability of success.

Let f(μ) be an optimal monotone non-increasing mapping.
If Tmax < Δ (i.e., N = 0), the problem is trivial since setting
all timers to 0 does not change the probability of success.
When Δ ≤ Tmax < 2Δ, let:

f1(μ) =
{

0, 0 ≤ f(μ) < Δ
f(μ), else

. (6)

It can be shown that f1(μ) is monotone non-decreasing and its
probability of success is greater than or equal to that of f(μ).
Since Tmax −Δ < Δ, setting all the remaining timers that lie
in [Δ, Tmax] to Δ does not change the probability of success.
Thus, the discrete mapping is optimal for Tmax < 2Δ.

When Tmax ≥ 2Δ, consider the new mapping f2(μ) such

that f2(μ) =
{

Δ, Δ ≤ f1(μ) < 2Δ
f1(μ), else

. It can again be

shown that the probability of success of f2(.) is greater than
or equal to that of f1(.). A successive application of this
argument shows that an optimal mapping takes values in the
discrete set {0,Δ, . . . , NΔ}.

B. Proof of Theorem 1

Success occurs at time lΔ, for l = 0, . . . , N , if μ(1) lies in[(
1 − ∑l

j=0 αN [j]
)

,
(
1 − ∑l−1

j=0 αN [j]
))

and the remaining

k−1 metrics lie in
[
0,

(
1 − ∑l

j=0 αN [j]
))

. This occurs with

probability kαN [l]
(
1 − ∑l

j=0 αN [j]
)k−1

since the metrics
are independent and identically distributed (i.i.d.) and uniform
over [0, 1). Summing over l gives (3).

We henceforth denote the probability of success by
PN (αN [0], . . . , αN [N ]) to show its dependence on
{αN [i]}N

i=0. Let the maximum probability of success,
P ∗

N , occur when αN [i] = α∗
N [i], 0 ≤ i ≤ N . Note that∑

i=0 αN [i] ≤ 1. A key step in the proof is that, for N ≥ 1,
the probability of success can be written as follows:

PN (αN [0], . . . , αN [N ]) =
Pr

(
μ(1) ∈ [1 − αN [0], 1)

)
Pr

(
success|μ(1) ∈ [1 − αN [0], 1)

)
+Pr

(
μ(1) 	∈ [1 − αN [0], 1)

)
Pr

(
success|μ(1) 	∈ [1 − αN [0], 1)

)
.

This helps reduce the number of variables that need to
be optimized from N + 1 to N as follows. Conditioned
on μ(1) 	∈ [1 − αN [0], 1), the k metrics are i.i.d. and uni-
formly distributed over the interval [0, 1− αN [0]). Therefore,
Pr

(
success|μ(1) 	∈ [1 − αN [k], 1)

) ≤ P ∗
N−1. Hence,

PN (αN [0], . . . , αN [N ]) ≤
kαN [0](1 − αN [0])k−1 + (1 − αN [0])kP ∗

N−1. (7)

The bound is achieved when αN [1]
1−α∗

N [0] = α∗
N−1[0],. . .,

αN [N ]
1−α∗

N [0] = α∗
N−1[N − 1], for any 0 ≤ αN [0] < 1. Therefore,

P ∗
N = kα∗

N [0](1 − α∗
N [0])k−1 + (1 − α∗

N [0])kP ∗
N−1. (8)

Using the first order condition, we get α∗
N [0] = 1−P∗

N−1
k−P∗

N−1
.

Similarly, for N = 0, we can show that P ∗
0 = (1 − 1/k)k−1

and α∗
0[0] = 1/k.

The value of f∗(μ) when it exceeds Tmax can be left
unspecified because such a node will not transmit. This is
ensured by setting f∗(μ) to Tmax + ε, where ε > 0.
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