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Abstract—In this paper, we study the impact of uncertain channel
state information (CSI) on the performance of demodulate-and-forward
relaying protocols with higher order modulation formats such as pulse-
amplitude modulation (PAM) and rectangular quadrature-amplitude
modulation (QAM). Assuming a single source and a single destination
node assisted by N relay nodes, we study the average bit error probability
(BEP) performance of M -ary PAM and rectangular QAM constellations
with Gray code mapping and imperfect CSI at the relay nodes as well as
the destination. The main contributions of this paper are the derivation
of closed-form expressions for a) the cumulative distribution functions of
the demodulator test statistics, b) the transition probability of error at a
given relay, and c) the average BEP for independent and not necessarily
identically distributed Rayleigh fading channels with imperfect receiver
CSI.

Index Terms—Cooperative communication, demodulate-and-forward
relaying, fading channel estimation, imperfect channel knowledge.

I. INTRODUCTION

Cooperative relaying has recently received significant attention,
both from academia and industry, as a new approach to enhance the
performance of wireless cellular, ad-hoc and sensor networks. Coop-
erative relaying, sometimes termed as distributed spatial diversity [1],
enables shared usage of single-antenna transceivers to realize virtual
antenna arrays [2] to increase coverage [3], enhance data rates [4]
and improve reliability [5] of energy-constrained mobile devices.

Two prominent relay signal processing approaches that have been
studied extensively are amplify-and-forward (AF or non-regenerative)
and decode-and-forward (DF or regenerative) relaying protocols.
With AF signal processing, the relay forwards a scaled version of the
received signal from the source to the destination. The scale factor (or
the amplification gain) at the relay is chosen as a function of either
the instantaneous [6] or the average channel power [7]. Performance
of coherent AF relaying is studied in [8] with perfect receiver channel
state information (CSI), whereas the impact of imperfect CSI on AF
relaying is investigated in [9] and [10].

A relay implementing DF signal processing decodes the source
transmission and re-encodes it before forwarding it to the desti-
nation [11]. To enable error detection at the relay, in practice,
cyclic redundant check (CRC) symbols are appended to the source
transmissions [12]. Demodulate-and-forward signal processing is
an alternative to DF signal processing to reduce receiver power
consumption due to channel decoding at the relay as well as to
minimize the overall delay at the destination. With the knowledge of
the relay decision errors, optimum demodulate-and-forward receivers
are presented in [13] with perfect and no receiver CSI, whereas a
cooperative maximal ratio combiner (MRC) receiver is presented in
[14] to extract near maximum-likelihood performance with perfect
receiver CSI. Unlike [13], [14], the present work does not assume
knowledge of the relay probability of error at the destination node.
Average bit error probability (BEP) performance of DF protocol with

PSK, PAM and QAM signal sets is studied in [15] over independent
and not necessarily identically distributed (i.n.i.d.) Rayleigh fading
channels with perfect receiver CSI. Symbol error probability analysis
for multi-hop transmission with M -PSK and M -QAM signaling and
regenerative relaying are reported in [16] and [17], respectively, over
i.n.i.d. Nakagami fading channels with perfect receiver CSI.

In this contribution, we investigate the impact of imperfect CSI
on the performance of demodulate-and-forward cooperative relaying
protocols with higher order signal constellations. In particular, we fo-
cus on analytical quantification of the degradation in the average BEP
performance at the destination with multiple relay nodes on i.n.i.d.
Rayleigh fading channels when the source node employs M -ary
rectangular QAM constellations with Gray mapping. We introduce a
model for imperfect receiver CSI that is general enough to encompass
various scenarios such as pilot-symbol assisted modulation, outdated
channel knowledge due to fading decorrelation, and linear minimum
mean-square error channel estimation. We present exact yet simple
closed-form expressions for the average BEP via the distribution
of demodulator test statistics with imperfect CSI. Importantly, our
analysis takes into account demodulation errors at the relay due to
finite average received SNR, fading and imperfect receiver CSI. Our
numerical and simulation results show that relay demodulation errors
lead to a serious degradation in average error performance, whereas
imperfect receiver CSI causes an irreducible error floor in the average
BEP.

The rest of this paper is organized as follows. In Section II, we
introduce our signal and channel models. Closed-form expressions
for the distribution of the demodulator test statistics and transition
probability of error at the relay are presented in Section III, and used
in Section IV to provide a closed-form expression for the average
error performance of multi-relay demodulate-and-forward protocol
with M -ary rectangular QAM modulation and imperfect receiver CSI.
Numerical and simulation results are presented in Section V whereas
Section VI concludes this work.

II. SYSTEM MODEL

We consider the system model illustrated in Fig. 1, where a single
source, S, communicates with a single destination, D, with the
assistance of N relay nodes. The channels across the nodes are
assumed to be random, independent, frequency-flat, and constant
over the signaling duration. We employ low-pass equivalent complex-
valued representation for the transmit and receive signals, channel
gains and background additive noise. Specifically, the channel gain
on the S → D link is denoted by G0, which is assumed to be a zero-
mean, circularly symmetric, complex Gaussian random variable (RV)
with variance E[|G0|2] = Ω0, where E[.] denotes the expectation
operator. Similarly, for the jth relay (Rj), we denote the gain on the
S → Rj link by Gj

1, and that on the Rj → D link by Gj
2, with
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Fig. 1. Sketch of the multi-relay demodulate-and-forward system model
under consideration.

variances E[|Gj
1|2] = Ωj

1 and E[|Gj
2|2] = Ωj

2, respectively. We note
that the average path loss across various links in the relay network can
be modeled by an approach choice of values for Ω0 and {Ωj

1, Ω
j
2}N

j=1.
The noise RVs, denoted as η0 on the S → D link and ηj

1 and ηj
2

for each S → Rj and Rj → D link, respectively, are assumed to
be independent, and are also independent of the transmitted symbols
and channel gains. Further, η0, {η1

j , η2
j }N

j=1 are modeled as zero-
mean additive circularly symmetric complex Gaussian RVs each with
a variance of σ2

N . We denote by S the signal constellation employed
by the source. In this paper, we restrict S to be a rectangular QAM
constellation of size M1×M2, consisting of the product of two PAM
constellations, of sizes M1 and M2, on the in-phase and quadrature-
phase branches, respectively.

In this paper, we assume a two-phase coherent relay signal process-
ing protocol, according to which, the source broadcasts its message
during the first phase, while the relays and destination are in listening
mode. During the second phase, the source remains silent and the
relays perform independent demodulation of the source signal. They
then forward their respective versions of the demodulated signal
to the destination on orthogonal channels. Finally, the destination
node performs coherent combining of the signals received during the
first and second phases. Clearly, knowledge of the fading channel
realizations at each relay and destination nodes is crucial for the
operation of this two-phase protocol. Quite often, pilot symbols are
embedded at the source in order for the relays and destination to
estimate the channel gains from the source. Similarly, each relay
node can send its own pilot symbols to enable the destination to
estimate the corresponding channel gain from the relay. The CSI at
the receivers may not always be perfect for a variety of reasons such
as the presence of noise on the received pilots and the time-variation
of the fading channel due to node mobility.

Notwithstanding the specifics of the CSI acquisition process, we
model the channel estimates on the S → D, S → Rj and
Rj → D links as zero-mean complex-Gaussian RVs that are
independent of each other. This model captures quite accurately
such practical scenarios as i) a pilot-symbol assisted modulation
(PSAM) technique [18] is employed to estimate the channel gains
of interest, ii) the channel estimates are obtained by linear filtering
of the received pilot symbols, or iii) the channel estimates are
delayed (i.e., stale or outdated, due to Doppler) versions [19] of
the true channels at the respective receiver nodes. From a notational
viewpoint, we denote the channel estimate on the S → D link by
H0 with variance E[|H0|2] = Λ0. For relay Rj , the estimates on the
S → Rj and Rj → D links are denoted as Hj

1 and Hj
2 , respectively,

with respective variances E[|Hj
1 |2] = Λj

1 and E[|Hj
2 |2] = Λj

2. The
normalized correlation coefficient between the true and the estimated
channel gains on the S → D, S → Rj and Rj → D links are

denoted by ρ0 = E[G0H
∗
0 ]/

√
Ω0Λ0, ρ1(j) = E[Gj

1H
j∗
1 ]/

√
Ωj

1Λ
j
1

and ρ2(j) = E[Gj
2H

j∗
2 ]/

√
Ωj

2Λ
j
2, respectively.

The received signal at D in the first time slot is given by

Y0 = G0S0 + η0, (1)

where S0 ∈ S, whereas at the jth relay it is given by

Y j
1 = Gj

1S0 + ηj
1, j = 1, . . . , N. (2)

We denote by Sj the demodulated signal at Rj based on Y j
1 and the

channel estimate Hj
1 . That is,

Sj = argmin
X∈S

{|X − Y j
1 /Hj

1 |2}. (3)

In the second time-slot, relay Rj transmits the demodulated symbol
Sj which is received at D as

Y j
2 = SjG

j
2 + ηj

2 j = 1, . . . , N. (4)

The destination coherently combines Y0 in (1) and {Y j
2 }N

j=1 in (4)
using the rule of MRC, hence the demodulator test statistic (DTS) Z
at node D, as given by

Z = ZI + JZQ =
Y0H

∗
0 +

∑N
j=1 Y j

2 Hj∗
2

|H0|2 +
∑N

j=1 |Hj
2 |2

, (5)

where J =
√−1. We note that the DTS with ideal demodulate-and-

forward relaying is obtained by setting Hj
2 = Gj

2 and H0 = G0

(i.e., perfect CSI at D) in (5) along with Sj = S0 (i.e., error-free
demodulation by relay Rj) in (4).

III. DISTRIBUTION OF DEMODULATOR TEST STATISTIC

We first notice that both the real part, ZI , and imaginary part, ZQ,
of the DTS (5), are sufficient test statistics to demodulate the bits
of the in-phase M1-ary PAM, and quadrature-phase M2-ary PAM
constellations, respectively. Thus, for the remainder of this section,
we focus on deriving expressions for the CDF of ZI and ZQ. For the
sake of notational convenience, let us define Y 0

2 = Y0, G0
2 = G0,

H0
2 = H0, η0

2 = η0, Ω0
2 = Ω0, Λ0

2 = Λ0 and ρ2(0) = ρ0. Then,
consider the following RVs for k = 0, . . . , N :

Ψk(x; Sk) = Y k
2 Hk∗

2 + Y k∗
2 Hk

2 − 2xHk
2 Hk∗

2 , (6)

and
Ξk(x; Sk) = JY k∗

2 Hk
2 − JY k

2 Hk∗
2 − 2xHk

2 Hk∗
2 . (7)

Note that the dependency of Ψk(·; ·) and Ξk(·; ·) in (6) and (7) on Sk

is due to the fact that Y k
2 depends on Sk via (4). Clearly, conditioned

on Sk, Ψk(x; Sk) and Ξk(x; Sk) are real-valued quadratic forms in
the complex Gaussian RVs Y k

2 and Hk
2 .

Using results from [20], the characteristic function (CHF) of Ψk

conditioned on Sj , Φk (Jν; Sk) := E[eJνΨk |Sk], can be expressed
as

Φk (Jν; Sk) = − ν1(k)ν2(k)

(ν + Jν1(k)) (ν − Jν2(k))
, (8)

where

ν1(k) =

√
ω2(k) +

1

σ2
Y (k)σ2

H(k) − |σY H(k)|2 − ω(k), (9)

ν2(k) =

√
ω2(k) +

1

σ2
Y (k)σ2

H(k) − |σY H(k)|2 + ω(k), (10)

ω(k) =
−xσ2

H(k) + Real{σY H(k)}
σ2

Y (k)σ2
H(k) − |σY H(k)|2 , (11)

σ2
Y (k) � E

[
|Y k

2 |2 |Sk

]
= |Sk|2Ωk

2 + σ2
N , (12)

σ2
H(k) � E

[
|Hk

2 |2
]

= Λk
2 , (13)

σY H(k) � E
[
Y k

2 Hk∗
2 |Sk

]
= Skρ2(k)

√
Ωk

2Λk
2 . (14)



Likewise, the CHF of Ξk conditioned on Sk, Υk (Jμ; Sk) :=
E[eJμΞk |Sk], can be obtained as

Υk (Jμ; Sk) = − μ1(k)μ2(k)

(μ + Jμ1(k)) (μ − Jμ2(k))
, (15)

where

μ1(k) =

√
τ2(k) +

1

σ2
Y (k)σ2

H(k) − |σY H(k)|2 − τ(k), (16)

μ2(k) =

√
τ2(k) +

1

σ2
Y (k)σ2

H(k) − |σY H(k)|2 + τ(k), (17)

and τ(k) = −xσ2
H(k) + Imag{σY H(k)}

σ2
Y (k)σ2

H(k) − |σY H(k)|2 . (18)

Conditioned on the modulation symbols Sl, l = 0, 1, . . . , N , the
CDF of ZI , FZI

(
x; {Sl}N

l=0

)
:= Prob

(
ZI ≤ x

∣∣{Sl}N
l=0

)
, can be

expressed as

FZI

(
x; {Sl}N

l=0

)
= Prob

(
N∑

k=0

Ψk (x, Sj) ≤ 0
∣∣∣{Sl}N

l=0

)

= − 1

2πJ

∞+Jε∫
−∞+Jε

dν

ν

N∏
k=0

Φk (Jν; Sk)

=
(−1)N

2πJ

∞+Jε∫
−∞+Jε

dν

ν

N∏
k=0

ν1(k)ν2(k)

(ν + Jν1(k)) (ν − Jν2(k))
, (19)

where ε > 0 in order to ensure convergence of the integral. Since the
ν1(k)s and ν2(k)s are distinct for i.n.i.d. S → D and {Rk → D}N

k=1

links, a closed-form solution for the conditional CDF can be obtained
by inverting (19), thus leading to1

FZI

(
x; {Sl}N

l=0

)
=

N∑
l=0

1

ν2(l)

N∏
k=0

ν1(k)ν2(k)

ν1(k) + ν2(l)

N∏
m=0,m�=l

1

ν2(m) − ν2(l)
. (20)

Along the similar steps, the conditional CDF of the imaginary part
ZQ of Z, FZQ

(
x; {Sl}N

l=0

)
:= Prob

(
ZQ ≤ x

∣∣{Sl}N
l=0

)
, can be

reduced to

FZQ

(
x; {Sl}N

l=0

)
= Prob

(
N∑

k=0

Ξk (x, Sj) ≤ 0
∣∣∣{Sl}N

l=0

)

= − 1

2πJ

∞+Jε∫
−∞+Jε

dμ

μ

N∏
k=0

Υk (Jμ; Sk)

=
(−1)N

2πJ

∞+Jε∫
−∞+Jε

dμ

μ

N∏
k=0

μ1(k)μ2(k)

(μ + Jμ1(k)) (μ − Jμ2(k))

=
N∑

l=0

1

μ2(l)

N∏
k=0

μ1(k)μ2(k)

μ1(k) + μ2(l)

N∏
m=0,m�=l

1

μ2(m) − μ2(l)
. (21)

Upon averaging over the relay constellation symbols, {S1, . . . , SN},
the CDFs of ZI and ZQ can respectively be expressed as

FZI (x; S0) �
∑
S1

· · ·
∑
SN

{
N∏

k=1

Prob (Sk |S0)

}
× FZI

(
x; {Sl}N

l=0

)
(22)

1For non-distinct values of ν1(k)s and ν2(k)s, the CHF can still be inverted
following the approach proposed in [21].

and

FZQ (x; S0) �
∑
S1

· · ·
∑
SN

{
N∏

k=1

Prob (Sk |S0)

}
× FZQ

(
x; {Sl}N

l=0

)
, (23)

where Prob (Sk |S0) is the probability that the kth relay demodulates
the source constellation symbol S0 as Sk. A closed-form expression
for Pk(i|j) := Prob (Sk = i |S0 = j) is derived in the journal
version of this paper [22] and is provided here without proof as (24),
given at the top of next page, where

αk + Jβk =
E[Gk

1Hk∗
1 ]

Λk
1

= ρ1(k)

√
Ωk

1

Λk
1

, (25)

Θj,k =
2Λk

1

σ2
N +

(
Ωk

1 − Λk
1(α2

k + β2
k)
) |sj |2 , (26)

H(a, b) = G(a, b)1{a≥0,b≥0} +

{2G(a, 0) − G(a, |b|)}1{a≥0,b<0}
+ {1 − 2G(|a|, 0) − 2G(0, |b|) + G(|a|, |b|)}1{a<0,b<0}
+ {2G(0, b) − G(|a|, b)}1{a<0,b≥0}, (27)

and

G(|a|, |b|) =
1

4
− 1

2π

√
b2

2 + b2
tan−1

(√
2 + b2

a2

)

− 1

2π

√
a2

2 + a2
tan−1

(√
2 + a2

b2

)
. (28)

In (27), 1{A} is the indicator function that evaluates to one (zero)
when the condition A is true (false).

IV. AVERAGE BIT ERROR PROBABILITY ANALYSIS

Let us denote the M1 × M2-QAM constellation points as sm =
sx + Jsy , m = 0, 1, . . . , M − 1, where M = M1M2, x =
0, 1, . . . , M1−1, y = 0, 1, . . . , M2−1, sx = (2x−M1 +1)d, sy =
(2y −M2 + 1)d, and 2d is the minimum distance between two con-
stellation points. We define k1 = log2(M1), k2 = log2(M2), and the
sets X = {0, 1, . . . , M1−1} and Y = {0, 1, . . . , M2−1}. The Gray
code mapping is denoted by the vectors (ak1−1, ak1−2, . . . , a0), and
(bk2−1, bk2−2, . . . , b0) for the in-phase signal sx and the quadrature-
phase signal sy , respectively. Additionally, for i = 0, . . . , k1 − 1,
we define the sets X1(i) = {x : (x mod 2i+2) = 2i + l, l =
0, . . . , 2i − 1} ∪ {x : (x mod 2i+2) = 2i+1 + l, l = 0, . . . , 2i − 1}
and X0(i) = {x : (x mod 2i+2) = l, l = 0, . . . , 2i − 1} ∪ {x :
(x mod 2i+2) = 3×2i + l, l = 0, . . . , 2i−1}. For j = 0, . . . , k2−1,
we define the sets Y1(j) = {y : (y mod 2j+2) = 2j + l, l =
0, . . . , 2j − 1} ∪ {y : (y mod 2j+2) = 2j+1 + l, l = 0, . . . , 2j − 1}
and Y0(j) = {y : (y mod 2j+2) = l, l = 0, . . . , 2j − 1} ∪ {y :
(y mod 2j+2) = 3 × 2j + l, l = 0, . . . , 2j − 1}.

With the help of above sets, tabulation of which can be found
in [23, Table 1], the decision rule for each bit ai, i = 0, . . . , k1 − 1,
is given by the following disjoint union of intervals on the x-axis [24]:

âi =

⎧⎪⎪⎨⎪⎪⎩
1 if ZI ∈ ∪x∈X1(i)

[
−∞× 1{x=0} + sx − d,

∞× 1{x=M1−1} + sx + d
)

0 otherwise

, (29)

whereas for bit bj , j = 0, . . . , k2 − 1, it is given by the following



Pk(i|j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H (−(sx′ − αksx + βksy + d)
√

Θj,k,−(sy′ − βksx − αksy + d)
√

Θj,k

)
i = 0

H ((sx′ − αksx + βksy − d)
√

Θj,k,−(sy′ − βksx − αksy + d)
√

Θj,k

)
i = M1 − 1

H (−(sx′ − αksx + βksy + d)
√

Θj,k, (sy′ − βksx − αksy − d)
√

Θj,k

)
i = M1(M2 − 1)

H ((sx′ − αksx + βksy − d)
√

Θj,k, (sy′ − βksx − αksy − d)
√

Θj,k

)
i = M1M2 − 1

H ((sx′ − αksx + βksy − d)
√

Θj,k,−(sy′ − βksx − αksy + d)
√

Θj,k

)−
H ((sx′ − αksx + βksy + d)

√
Θj,k,−(sy′ − βksx − αksy + d)

√
Θj,k

)
i = 1, . . . , M1 − 2

H ((sx′ − αksx + βksy − d)
√

Θj,k, (sy′ − βksx − αksy − d)
√

Θj,k

)−
H ((sx′ − αksx + βksy + d)

√
Θj,k, (sy′ − βksx − αksy − d)

√
Θj,k

)
i − M1(M2 − 1) = 1, . . . , (M1 − 2)

H (−(sx′ − αksx + βksy + d)
√

Θj,k, (sy′ − βksx − αksy − d)
√

Θj,k

)−
H (−(sx′ − αksx + βksy + d)

√
Θj,k, (sy′ − βksx − αksy + d)

√
Θj,k

)
i = M1, 2M1, . . . , (M2 − 2)M1

H ((sx′ − αksx + βksy − d)
√

Θj,k, (sy′ − βksx − αksy − d)
√

Θj,k

)−
H ((sx′ − αksx + βksy − d)

√
Θj,k, (sy′ − βksx − αksy + d)

√
Θj,k

)
i − M1 + 1 = M1, 2M1, . . . , (M2 − 2)M1

H ((sx′ − αksx + βksy − d)
√

Θj,k, (sy′ − βksx − αksy − d)
√

Θj,k

)−
H ((sx′ − αksx + βksy − d)

√
Θj,k, (sy′ − βksx − αksy + d)

√
Θj,k

)− x′ = 1, 2, . . . , M1 − 2
H ((sx′ − αksx + βksy + d)

√
Θj,k, (sy′ − βksx − αksy − d)

√
Θj,k

)
+ y′ = 1, 2, . . . , M2 − 2

H ((sx′ − αksx + βksy + d)
√

Θj,k, (sy′ − βksx − αksy + d)
√

Θj,k

)
i = x′ + M2y′

(24)

disjoint union of intervals on the y-axis

b̂j =

⎧⎪⎪⎨⎪⎪⎩
1 if ZQ ∈ ∪y∈Y1(j)

[
−∞× 1{y=0} + sy − d,

∞× 1{y=M2−1} + sy + d
)

0 otherwise.

(30)

Clearly, evaluating the average BEP for the constellation, using (29)
and (30), requires knowledge of the CDF of ZI and ZQ, which are
derived in (22) and (23), respectively, as a function of the source
constellation symbol S0. Upon using (22) and (23), the average BEP
for bits ai and bj can be expressed as (31) and (32), respectively,
shown at the top of the next page. The average BEP for the whole
constellation is obtained by averaging over ai and bj as follows

Pb =

∑log2(M1)
i=1 Pb(ai) +

∑log2(M2)
j=1 Pb(bj)

log2(M1) + log2(M2)
. (33)

V. RESULTS AND DISCUSSION

In this section, we present some numerical and simulation results
on the average BEP performance of demodulate-and-forward relaying
with multi-level modulations and imperfect receiver CSI. Note that
the average BEP analysis in Section IV is valid for an arbitrary
number of relays and rectangular QAM constellations with arbitrary
size. However, for the sake of simplicity, we restrict the results
presented in this section and the scope of our discussion to the case
of a single relay node with 16- and 64-QAM square constellations.

Fig. 2 shows the impact of imperfect CSI on the average BEP
performance of demodulate-and-forward relaying with Gray-coded
16-QAM as a function of the average received SNR on the S → D
link. The average received SNR is set to 10 dB and 20 dB on the
S → R and R → D links, respectively. The S → D, S → R
and R → D channels are estimated using pilot symbols with an
average received pilot SNR of 10, 5 and 15 dB, respectively. We
denote by p (perfect) and i (imperfect) the quality of the available
CSI on a particular link. Hence, a total of 8 distinct possibilities
exist describing the quality of the (S → D, S → R, R → D) links,
ranging from (p, p, p) (all the links with perfect CSI) to (i, i, i) (all
the links with imperfect CSI). The average BEP performance for the
8 distinct cases is shown in Fig. 2 along with the lower bound on
the average BEP, which is obtained by assuming perfect CSI on all
the links together with error-free demodulation at the relay. From
Fig. 2, we conclude that even with perfect CSI on all the links, relay
demodulation incurs approximately 25 dB loss in performance at 1
percent error rate. Among the (S → D, S → R, R → D) links,
imperfect CSI on the S → D link causes maximum degradation in
the average error performance.
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Fig. 2. Average BEP Performance of Gray-coded 16-QAM with single relay
and imperfect CSI.

The average BEP performance for 64-QAM modulation is plotted
in Fig. 3. In this figure, the average SNRs (in dB) on the S → R
and R → D links are set to 20 and 30, respectively, whereas the
average received pilot SNRs (in dB) on the S → D, S → R and
R → D links are set to 20, 10 and 20, respectively. Corroborating
the trends observed in Fig. 2, it is apparent from Fig. 3 that, for
the chosen set of parameters, even with perfect receiver CSI, relay
demodulation errors alone lead to a significant loss in the average
error performance. On top of this, imperfect CSI on the S → D
link causes further degradation in error performance in terms of an
irreducible error floor.

VI. CONCLUSION

In this paper, we studied the performance of a multi-relay
demodulate-and-forward cooperation protocol with higher-order M -
QAM modulation. Considering i.n.i.d. Rayleigh fading channels
with imperfect receiver CSI, we derived closed-form expressions for
the transition probability of error at the relays, the distribution of
DTS and the average BEP at the destination. Our numerical and
simulation results revealed that relay demodulation errors, even with
perfect CSI, can lead to severe loss in receiver performance, whereas
imperfect CSI introduces an irreducible error floor on the average
error probability.



Pb(ai) =
1

M

∑
x0∈X0(i)

∑
x1∈X1(i)

∑
y∈Y

{
FZI

(∞× 1{x1=M1−1} + (2x1 + 2 − M1)d; (2x0 + 1 − M1)d + J(2y + 1 − M2)d
)

−FZI

(−∞× 1{x1=0} + (2x1 − M1)d; (2x0 + 1 − M1)d + J(2y + 1 − M2)d
) }

+

1

M

∑
x1∈X1(i)

∑
x0∈X0(i)

∑
y∈Y

{
FZI

(∞× 1{x0=M1−1} + (2x0 + 2 − M1)d; (2x1 + 1 − M1)d + J(2y + 1 − M2)d
)

−FZI

(−∞× 1{x0=0} + (2x0 − M1)d; (2x1 + 1 − M1)d + J(2y + 1 − M2)d
) }

(31)

and Pb(bj) =
1

M

∑
y0∈Y0(j)

∑
y1∈Y1(j)

∑
x∈X

{
FZQ

(∞× 1{y1=M2−1} + (2y1 + 2 − M2)d; (2x + 1 − M1)d + J(2y0 + 1 − M2)d
)

−FZQ

(−∞× 1{y1=0} + (2y1 − M2)d; (2x + 1 − M1)d + J(2y0 + 1 − M2)d
) }

+

1

M

∑
y1∈Y1(j)

∑
y0∈Y0(j)

∑
x∈X

{
FZQ

(∞× 1{y0=M2−1} + (2y0 + 2 − M2)d; (2x + 1 − M1)d + J(2y1 + 1 − M2)d
)

−FZQ

(−∞× 1{y0=0} + (2y0 − M2)d; (2x + 1 − M1)d + J(2y1 + 1 − M2)d
) }

. (32)
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Fig. 3. Average BEP Performance of Gray-coded 64-QAM with single relay
and imperfect CSI.
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