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Statistical Analysis on Manifolds and
its applications to Video Analysis

Pavan Turaga, Ashok Veeraraghavan, Anuj Srivastava, Rama Chellappa

Abstract The analysis and interpretation of video data is an important com-
ponent of modern vision applications such as biometrics, surveillance, motion-
synthesis and web-based user interfaces. A common requirement among these
very different applications is the ability to learn statistical models of appear-
ance and motion from a collection of videos, and then use them for recognizing
actions or persons in a new video. These applications in video analysis require
statistical inference methods to be devised on non-Euclidean spaces or more
formally on manifolds. This chapter outlines a broad survey of applications
in video analysis that involve manifolds. We develop the required mathemat-
ical tools needed to perform statistical inference on manifolds and show their
effectiveness in real video-understanding applications.

1 Introduction

Applications in computer vision often involve the study of geometric scenes
and their interplay with physical phenomena such as illumination and motion.
When these scenes are imaged using cameras, the observed appearances obey
certain mathematical constraints that are induced by the underlying physical
constraints. Examples include the observation that images of a convex object
under all possible illumination conditions lie on the so called ‘illumination-
cone’ [17]. Images taken under a stereo-pair are constrained by the epipolar
geometry of the cameras [22]. Similarly, the 3D pose of the human head is
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parameterized by three angles – hence, under constant illumination and ex-
pression, the observed face of a human under different viewing directions lies
on a three-dimensional manifold. In a particular application, if the physical
and mathematical constraints are well-understood, such as in epipolar geom-
etry and illumination modeling, then one can design accurate modeling and
inference techniques derived from this understanding.

In several applications of video analysis such as gait-based human ID,
activity recognition, shape-based dynamics modeling, and video-based face
recognition, some of the constraints that arise have a special form. These
special constraints can often be expressed in the form of an equation with
some smoothness criterion. Such constraints can be formally defined as man-
ifolds. Before we give precise definitions of what is meant by a manifold, let
us first consider some simple problems that illustrate why special attention is
needed to study them. To enable this discussion, we shall for the time-being
assume that a ‘manifold’ is defined as a set of points in R

n that satisfy an
equation f(x) = 0 (with appropriate conditions on f() that shall be spelt out
in a later section). For example, the set of points that satisfy the equation
f(x) = xTx− 1 = 0 is the unit hyper-spherical manifold in R

n.
Now one might ask, what is special about these constraints that require

new mathematical tools from differential geometry and topology ? Can we
not use the classical Euclidean methods and multi-variate statistics, with
perhaps some loss of accuracy ? To answer these questions, we will consider a
very simple engineering problem. Suppose, a highway construction engineer
is laying out a road between two cities which are far apart. Given two cities
on the earth, the engineer wants to know a) what is the length of the road
required (so as to estimate the amount of building material that needs to be
ordered), b) where should a rest-area that is mid-way between the two cities
be placed.

Given two points x1 and x2 on the earth, he/she would like to compute
the shortest distance between them. If the curvature of the earth were not
taken into account, and all he/she knew was that the points are in R

3, he/she
might choose to use the standard Euclidean norm ‖x1 − x2‖. Unfortunately,
this would lead to the engineer underestimating the distance between the
two cities. But equipped with the additional knowledge that the earth is
well-approximated as a sphere in R

3, we can interpret the Euclidean norm as
the ‘chordal-length’ between these points. The knowledge of this geometry of
the constraint set also shows that the Euclidean distance is not intrinsic i.e.
if we sample points along the shortest straight line path, the samples do not
lie on the sphere. This distance is thus meaningless for the engineer since it
would require him to lay a tunnel underneath the surface instead of a road
on the surface of the earth.

Similarly, given two cities/points that lie on the unit-hypersphere as before,
we wish to compute a mean-point where a rest-area may be constructed. Once
again, if we did not know the nature of the constraint set, we might use the
arithmetic-mean as the mean-point. Now given the extra information that
these points need to lie on a hypersphere, it is obvious that the arithmetic
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mean is not intrinsic either since it does not lie on the hypersphere. The
arithmetic mean of these points would lie under the surface of the earth
rendering it physically meaningless. A much more complicated situation arises
when we want to place say 3 rest areas in the midst of 10 cities with some
optimality criterion such as reducing the overall length of road to be laid. This
requires solving an optimization problem with manifold-valued constraints.

Even though these are fairly simple applications, they illustrate the need
to understand the underlying constraints to obtain geometrically meaningful
distances and statistics. Naturally, in the presence of such constraints, classi-
cal Euclidean geometry fails to provide meaningful solutions. This motivates
the need to study such non-Euclidean spaces via methods from differential
geometry.

Organization: We begin the chapter by motivating the study of manifold
analysis for video processing applications. We then provide an introduction
to manifold theory and describe relevant manifolds and provide an introduc-
tion to differential geometry on these manifolds. In Section 4, we present
methods to perform statistical inference on these manifolds. In Section 5,
we present several applications of the presented theory to problems in video
understanding.

2 Motivation for studying Manifolds in Video Analysis

Let us first consider some real applications in video understanding that
require appreciating the geometry of some non-Euclidean manifolds. Once
again, we shall for the time-being assume that a ‘manifold’ is defined as a set
of points in R

n that satisfy an equation f(x) = 0 (with appropriate conditions
on f() that shall be spelt out in the next section).

The problem of video understanding can be studied from three widely
differing perspectives a) The feature space, b) The model space and c) The
transformation space. Even though the specific nature of these spaces can be
quite different, a large class of these spaces can be described mathematically
as manifolds. Traditionally, ‘manifold-learning’ methods have been at the
forefront of these applications where an analytical characterization of these
spaces cannot be found. In the past few years, computer vision researchers
have made significant advancement in the analytical and geometric under-
standing of these varied spaces. This marks an important development in
computer vision by moving away from data-driven approaches to geometry-
driven approaches for characterizing videos. We provide specific examples
of various analytical manifolds found in different applications of computer
vision below.

1. Feature Spaces: Video understanding typically begins with the extrac-
tion of some specific features from the videos. Examples of these features
include background subtracted images, shapes, intensity features, motion
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vectors etc. These features extracted from the videos might satisfy cer-
tain geometric and photometric constraints. The feature space deals with
understanding and characterizing the geometry of features that can be
extracted from videos. The study of this space then enables appropriate
modeling methodologies to be designed. Consider the example of the shape
feature. Shapes in images are commonly described by a set of landmarks on
the object being imaged. After appropriate translation, scale and rotation
normalization it can be shown that shapes reside on a complex spherical
manifold. Further, by factoring out all possible affine transformations, it
can be shown that shapes reside on a Grassmann Manifold.

2. Model Spaces: After features are extracted from each frame of the
video, the next step in video analysis, is to describe a sequence of such
features using appropriate spatio-temporal models. One specific example of
this is modeling the feature sequence as realizations of dynamical systems.
Examples include dynamic textures, human joint angle trajectories and
silhouette sequences. One popular dynamical model for such time-series
data is the autoregressive and moving average (ARMA) model. The space
spanned by the columns of the observability matrix of the ARMA model
can be identified as a point on the Grassmann manifold. Time-varying and
switching linear dynamical systems can then be interpreted as paths on
the Grassmann manifold.

3. Transformation Spaces: Finally, the transformation space encom-
passes all possible manifestations of the same semantic activity. The study
of this space is important to achieve invariance to factors such as view-
changes and execution-rate changes. In this chapter we consider the specific
instance of execution-rate variations in human activities, which is modeled
as temporal warps of feature trajectories. The space of these warps is the
space of positive and monotonically increasing functions mapping the unit-
interval to the unit-interval. The derivatives of warping functions can be
interpreted as probability density functions. The square-root form of pdf’s
can then be described as a sphere in the space of functions. Variability in
sampling closed planar curves gives rise to variations in observed feature
points on shapes. This variability can also be modeled as a sphere in the
space of functions (also known as a Hilbert sphere).

As these examples illustrate, manifolds arise quite naturally in several
vision-based applications.

2.1 Manifold theory in Vision

There has been an increasing awareness of the need to perform statistical
inferences on non-Euclidean domains for a variety of reasons. There has been
a significant amount of work in this area in several disciplines. Here, we will
review some of these works. This treatment by no means should be considered
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exhaustive. The use of certain groups, e.g. Euclidean groups, have been fun-
damental in physics since Einstein and perhaps earlier. The Euclidean motion
group plays a fundamental role in rigid body dynamics and uncertainties in
modeling dynamic systems have been characterized using probability mea-
sures on this group. Another community that has combined the strengths of
geometry and statistics is stochastic control [11, 10] where system variables
and controls are constrained to be on certain non-Euclidean manifolds.

To the best of our knowledge, the first major effort in using geometry and
statistics in pattern recognition was introduced by Ulf Grenander in the early
70s [19, 18]. Grenander created the field of pattern theory which had the fol-
lowing important components: (i) represent the systems of interest using al-
gebraic structures that favor rule-based compositions, (ii) capture variability
in these systems using probabilistic super-structures, and (iii) develop effi-
cient algorithms for inferences using geometries of underlying spaces. Over
the last three decades, this philosophy has been implemented in a number of
contexts with explicit involvement of statistics on non-Euclidean manifolds.
We list a few here: The work on analyzing anatomical variability using non-
invasive imaging (such as MRI, PET, etc) involved probabilistic structures
on high-dimensional deformation groups – this area has recently been labeled
as computational anatomy [20, 31]. An algebraic pattern theoretic approach
has not been exclusive to medical imaging only. It has also been used in ad-
dressing computer vision and image analysis problems. For example, in the
problem of recognizing objects in images, the variability due to viewing angle
of the camera is very important. [21] deals with the problem of estimating
the pose as an element of SO(3) and that of bounding the estimating er-
ror using statistical bounds. [40] studies the problem of using Markov Chain
Monte Carlo methods for performing estimation on some matrix Lie groups
e.g. SO(n), and their quotient spaces, e.g. a Grassmann manifold, while [41]
studies the problem of subspace tracking (in signal processing) as a problem
of nonlinear filtering on a complex Grassmann manifold. While these papers
involve statistical inferences on manifolds, there is a strong literature on more
general optimization problems. For example, a major work in the area of op-
timization algorithms on Grassmann and Stiefel manifolds was presented by
Edelman et al. [16, 1].

Another prominent area that employed statistical models and inferences on
non-Euclidean manifolds is shape analysis. Starting with a trend-setting pa-
per by Kendall [26, 28], there has been a remarkable literature on representing
and analyzing shapes of objects, in images or otherwise, using a “landmark-
based” approach. In terms of statistical analysis, this is perhaps the most
mature area involving manifolds as domains [15, 36]. In more recent years,
there has been an extension of Kendall’s shape theory to infinite-dimensional
representations of shapes of curves and surfaces [27, 39, 32].

The area of statistics and inference on manifolds has seen a large growth in
recent years. Many of the ideas have been formally introduced and advanced
through the efforts of many researchers. One of the landmark works in es-
tablishing mean estimation and central limit theorems for manifold-valued
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variables is Bhattacharya and Patrangenaru [5, 4]. Another important piece
of work comes from Pennec [33] who has applied these notions for detection
and classification of anatomical structures in medical images. Recent appli-
cations in computer vision have included study of Kendall’s shape spaces for
human gait analysis [48], and hilbert sphere modeling of time warp func-
tions for human activities in [49]. Other applications include classification
over Grassmann manifolds for shape and activity analysis [3, 45], and face
recognition [30]. A recently developed formulation of using the covariance
of features in image-patches has found several applications such as texture
classification [46], and pedestrian detection [47]. Mean-shift clustering was
extended to general Riemannian manifolds in [42].

3 Introduction to Manifolds

We shall first start with the topological definition of a manifold in terms of
charts and atlases. Using them, we will show that Rn is indeed a differentiable
manifold. Then, we state a theorem that defines sub-manifold of a manifold as
a solution of an equation. This shall be specialized to the case of manifolds
that are actually sub-manifolds of R

n, arising as solutions of an equation
in R

n with some conditions. Furthermore, we will establish the notions of
tangent vectors and tangent spaces on non-Euclidean manifolds. This will
then allow the use of classical statistical methods on the tangent planes via
the exponential map and its inverse. We shall provide specific examples to
illustrate these notions.

3.1 General Background from Differential Geometry

We start by considering the definition of a general differentiable manifold.
The material provided here is brief and by no means comprehensive. We
refer the interested readers to two excellent books [9][38] for a more detailed
introduction to differential geometry and manifold analysis. A topological
space M is called a differentiable manifold if, amongst other properties,
it is locally Euclidean. This means that for each p ∈ M , there exists an
open neighborhood U of p and a mapping φ : U → R

n such that φ(U) is
open in R

n and φ : U → φ(U) is a diffeomorphism. The pair (U, φ) is called
a coordinate chart for the points that fall in U ; for any point y ∈ U , one
can view the Euclidean coordinates φ(y) = (φ1(y), φ2(y), . . . , φn(y)) as the
coordinates of y. The dimension of the manifold M is n. This is a way of
flattening the manifold locally. Using φ and φ−1, one can move between the
sets U and φ(U) and perform calculations in the more convenient Euclidean
space. If there exists multiple such charts, then they are compatible, i.e. their
compositions are smooth. We look at the some simple manifolds as examples.
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Example 1. (Rn is a manifold)

1. The Euclidean space Rn is an n-dimensional differentiable manifold which
can be covered by the single chart (Rn, φ), φ(x) = x.

2. Any open subset of a differentiable manifold is itself a differentiable man-
ifold. A well known example of this idea comes from linear algebra. Let
M(n) be the set of all n×n matrices; M(n) can be identified with the set
R
n×n and is, therefore, a differentiable manifold. Define the subset GL(n)

as the set of non-singular matrices, i.e. GL(n) = {A ∈M(n)| det(A) 6= 0},
where det(·) denotes the determinant of a matrix. Since GL(n) is an open
subset of M(n), it is also a differentiable manifold.

Fig. 1 Figure illustrating the notions of tangent spaces, tangent vectors, and geodesics

In order to perform differential calculus, i.e. to compute gradients, direc-
tional derivatives, critical points, etc., of functions on manifolds, one needs
to understand the tangent structure of those manifolds. Although there are
several ways to define tangent spaces, one intuitive approach is to consider
differentiable curves on the manifold passing through the point of interest,
and to study the velocity vectors of these curves at that point. To help vi-
sualize these ideas, we illustrate the notions of tangent planes, geodesics in
figure 1. More formally, let M be an n-dimensional manifold and, for a point
p ∈ M , consider a differentiable curve γ : (−ǫ, ǫ) → M such that γ(0) = p.
The velocity γ̇(0) denotes the velocity of γ at p. This vector has the same
dimension as the manifold M itself and is an example of a tangent vector
to M at p. The set of all such tangent vectors is called the tangent space
to M at p. Even though the manifold M maybe nonlinear, the tangent space
Tp(M) is always linear and one can impose probability models on it using
more traditional approaches.

Example 2. 1. In case of the Euclidean space Rn, the tangent space Tp(R
n) =

R
n for all p ∈ R

n.
2. For GL(n), the space of non-singular matrices and for an A ∈ GL(n), let
γ(t) be a path in GL(n) passing through A ∈ GL(n) at t = 0. The velocity
vector at p, γ̇(0), is an element of M(n), the set of all n× n matrices.
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Next we introduce the notion of a differential which is important in defining
the submanifolds of interest to us. Several of the spaces we will study can
be viewed as submanifolds of larger manifolds such as R

n and GL(n). The
differential of a smooth mapping f : M → N at p ∈ M , denoted by dfp, is a
linear map dfp : Tp(M) → Tf(p)(N) specified as follows. Let g : N → R be a
smooth function. Then, for any v ∈ Tp(M), define (dfp(v))(g) = v(f ◦ g)(p).
A point p ∈ M is said to be a regular point if dfp is onto, and its image
under f is said to be a regular value.

Theorem 1. Suppose M and N are manifolds of dimensions m and n re-

spectively, and let f :M → N be a smooth map, with a regular value y ∈ N .

Then f−1(y) is a submanifold of M of dimension m− n.

This theorem states that the pullback sets of certain types of points under
smooth maps have the submanifold structure. Important examples of such
pullback sets include spheres in Euclidean spaces.

Example 3. 1. Unit Sphere: Using this theorem, let us check if Sn is indeed
a submanifold of Rn+1. Let f : Rn+1 → R be a map given by f(p) =
∑n+1
i=1 p

2
i , where p = (p1, . . . , pn+1). The differential of f is given dfp(u) =

2〈p, u〉, which is clearly onto for all p ∈ f−1(1). Thus, 1 is a regular value
of f and the set f−1(1) given by S

n is an n-dimensional submanifold of
R
n+1. Also, the tangent space Tp(S

n) is just the orthogonal complement
of p ∈ R

n+1.
2. Orthogonal Matrices: We now consider the set O(n) of orthogonal ma-

trices, which is a subset of the manifold GL(n). We define O(n) to be the
set of all n×n invertible matrices O that satisfy OOT = I. Define S(n) to
be the set of n×n symmetric matrices, and then define f : GL(n) → S(n)
by f(O) = OOT . It can easily be shown that I is a regular value of f
and, hence, f−1(I) = O(n) is a submanifold of GL(n). Note that O(n) is
not connected, but has two components: those orthogonal matrices with
determinant +1, and those with determinant −1. The set of orthogonal
matrices with determinant 1 is called the special orthogonal group,
and denoted by SO(n). The dimension of O(n) can be determined by the
above theorem; it is n2 − n(n + 1)/2 = n(n − 1)/2. One can show that
TOO(n) = {OX|X is an n× n skew-symmetric matrix}.

We now consider the task of measuring distances on a manifold. This is
accomplished using a Riemannian metric defined as follows.

Definition 1. A Riemannian metric on a differentiable manifold M is a
map 〈·, ·〉 that smoothly associates to each point p ∈M a symmetric, bilinear,
positive definite form on the tangent space Tp(M).

A differentiable manifold with a Riemannian metric on it is called a Rie-
mannian manifold.

Example 4. 1. Rn is a Riemannian manifold with the Riemannian metric
〈v1, v2〉 = vT1 v2, the standard Euclidean product.
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2. We have earlier examined the manifold O(n) and stated that its tangent
space is: TOO(n) = {OX : X is skew-symmetric}. Define the inner prod-
uct for any Y,Z ∈ TOO(n) by 〈Y,Z〉 = trace(Y ZT ), where trace denotes
the sum of diagonal elements. With this metric O(n) becomes a Rieman-
nian manifold.

3. Similarly, for the unit sphere S
n and a point p ∈ S

n, the Euclidean inner
product on the tangent vectors make S

n a Riemannian manifold. That is,
for any v1, v2 ∈ Tp(S

n), we used the Riemannian metric 〈v1, v2〉 = vT1 v2.

Using the Riemannian structure, it becomes possible to define lengths of
paths on a manifold. Let α : [0, 1] 7→ M be a parameterized path on a
Riemannian manifold M that is differentiable everywhere on [0, 1]. Then dα

dt
,

the velocity vector at t, is an element of the tangent space Tα(t)(M), with

length given by
√

〈

dα
dt
, dα
dt

〉

. The length of the path α is then given by:

L[α] =

∫ 1

0

√

(〈

dα(t)

dt
,
dα(t)

dt

〉)

dt . (1)

For any two points p, q ∈ M , one can define the distance between them as
the infimum of the lengths of all smooth paths on M which start at p and
end at q:

d(p, q) = inf
{α:[0,1] 7→M |α(0)=p,α(1)=q}

L[α] . (2)

A path α̂ which achieves the above minimum, if it exists, is a geodesic
between p and q on M .

Example 5. 1. Geodesics on a unit sphere Sn are great circles [9]. The distance
minimizing geodesic between two points p and q is the shorter of the two
arcs of a great circle joining them between them. As a parameterized curve,
this geodesic is given by:

α(t) =
1

sin(θ)
[sin(θ − t)p+ sin(t)q] (3)

where θ = cos−1(〈p, q〉).
2. To define geodesics on SO(n), we introduce the notion of matrix expo-

nential. For a matrix A ∈ M(n), define its matrix exponential exp(A)
by:

exp(A) = I +
A

1!
+
A2

2!
+
A3

3!
+ . . . (4)

Using the matrix exponential, one can define geodesics on SO(n) (with
respect to the Riemannian metric defined earlier) as follows: for any O ∈
SO(n) and any skew-symmetric matrixX, α(t) ≡ O exp(tX), is the unique
geodesic in SO(n) passing through O with velocity OX at t = 0 [9].

An important tool in studying statistics on a manifold is an exponential
map. If M is a Riemannian manifold and p ∈ M , the exponential map



10 Chellappa et al.

expp : Tp(M) → M , is defined by expp(v) = αv(1) where αv is a constant
speed geodesic whose velocity vector at p is v. For Rn, under the Euclidean
metric, since geodesics are given by straight lines, the exponential map is a
simple addition: expp(v) = p + v, for p, v ∈ R

n. The exponential map on a
sphere, exp : Tp(S

n) 7→ S
n, is given by expp(v) = cos(‖v‖)p+ sin(‖v‖) v

‖v‖ . In

case of SO(n), the exponential is given by expO(X) = O exp(X), where the
exponential on the right side is defined in Eqn. 4. We illustrate the notions
of the exponential map in figure 2.

Fig. 2 Figure illustrating the notion of exponential maps and inverse exponential maps.

3.2 Special Manifolds of Interest

We are interested in quotient spaces of the special orthogonal group SO(n)
studied earlier. We start by introducing the notion of a quotient space of a
group. A group G is a set having an associative binary operation, denoted by
·, such that: (i) there is an identity element e in G, and (ii) for each element,
there exists a unique inverse. Let H be a subgroup of G. For any element
g ∈ G, define a left coset of H in G by gH = {g · h

∣

∣h ∈ H}. In general, the
cosets are not subgroups and the only coset that is a subgroup of G is H itself
(eH). For different elements g1 and g2, the cosets g1H and g2H will either
be identical or disjoint. They will be identical when g−1

2 g1 is an element of
H; otherwise they will be disjoint. This is similar to an equivalence relation
that partitions a set into disjoint equivalence classes. In fact, one can define
an equivalence relation using membership of these cosets: we define g1 ∼ g2
if g1 ∈ g2H, i.e. g1 = g2h for some h ∈ H. In the notation of equivalence
classes, we have [g] = gH. The quotient space G/ ∼, also denoted by G/H to
emphasize the role of H in defining ∼, is the set of all left cosets of H in G.
The quotient space G/H is also called the space G modulo H, or the space
that results when H is removed from G.

Now we consider three specific manifolds that are important in our analysis
of features in videos.

1. Stiefel Manifold: Let the set of all n× d orthogonal matrices be Sn,d,
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Sn,d = {U ∈ R
n×d|UTU = Id} ⊂ GL(n, d). (5)

Sn,d is called a Stiefel manifold, and each element of Sn,d provides an
orthonormal basis for a d-dimensional subspace of Rn. Sn,d can also be
viewed as a quotient space of SO(n) as follows. First, consider SO(n− d)
as a subgroup of SO(n) using the embedding: φ1 : SO(n − d) 7→ SO(n),
defined by

φ1(V ) =

[

Id 0
0 V

]

∈ SO(n) . (6)

With this embedding, we can generate left cosets of SO(n): for an O ∈
SO(n), a coset is given by Oφ1(S(n − d)). This defines an equivalence
relation ∼ in SO(n) according to: for Q1, Q2 ∈ SO(n),

Q1 ∼ Q2, if and only if Q1 = Q2φ1(V ), for some V ∈ SO(n− d) .

In other words, Q1 ∼ Q2 if and only if their first d columns are identical,
irrespective of the remaining columns. Therefore, Sn,d can be viewed as
the quotient space

Sn,d = SO(n)/ ∼ or SO(n)/φ1(SO(n−d)) or simply SO(n)/SO(n−d) .

2. Grassmann Manifold: If one is interested only in the subspace spanned
by the columns of U , and not in a particular basis, then the required space
is reduced further. Let SO(d)×SO(n− d) be a subset of SO(n) using the
embedding φ2 : (SO(d)× SO(n− d)) 7→ SO(n):

φ2(V1, V2) =

[

V1 0
0 V2

]

∈ SO(n) , V1 ∈ SO(d), V2 ∈ SO(n− d). (7)

As for Sn,d, define an equivalence relation as a coset of SO(n) generated
by the subgroup φ2(SO(d)×SO(n−d)) and let Gn,d be the quotient space
SO(n)/φ2(SO(d) × SO(n − d)), or simply SO(n)/(SO(d) × SO(n − d)).
We will use the square-brackets to denote elements of Gn,d:

[U ] = {UO|U ∈ Sn,d, O ∈ SO(d)} .

3. Kendall’s Shape Manifold: Kendall [25] provided a mathematical the-
ory for the description of landmark based shapes. Bookstein [8] and later
Dryden and Mardia [14] have furthered the understanding of such land-
mark based shape descriptions. Kendall’s representation of shape describes
the shape configuration of n landmark points in an d-dimensional space as
a n× d matrix containing the coordinates of the landmarks. Pre-shape is
the geometric information that remains when location and scale effects are
filtered out. Let the configuration of a set of n landmark points be given
by a n-dimensional complex vector containing the positions of landmarks.
Let us denote this configuration as X. The centered pre-shape is obtained
by subtracting the mean from the configuration and then scaling to norm
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one. The centered pre-shape is given by

Zc =
CX

‖ CX ‖ , where C = In − 1

n
1n1

T
n , (8)

where In is a n × n identity matrix and 1n is a n-dimensional vector
of ones. The pre-shape vector that is extracted by the method described
above lies on a spherical manifold. Let us denote this pre-shape space as
Pn,d. The shape space is now the quotient of the preshape space obtained
by removing all rotations of the shape i.e. Pn,d/SO(d).

Example 6. (Kendall Shape Metrics) Several distance metrics have been
defined in [14] to measure distances between shapes using the Kendall’s shape
representation. Here, we shall describe some of them. Consider two complex
configurations X and Y with corresponding preshapes α and β. The full
Procrustes distance between the configurations X and Y is defined as the
Euclidean distance between the full Procrustes fit of α and β. Full Procrustes
fit is chosen so as to minimize

d(Y,X) =‖ β − αsejθ − (a+ jb)1n ‖, (9)

where s is a scale, θ is the rotation and (a+ jb) is the translation. The Full
Procrustes distance is the minimum Full Procrustes fit i.e.,

dFull(Y,X) = inf
s,θ,a,b

d(Y,X). (10)

We note that the preshapes are actually obtained after filtering out effects
of translation and scale. Hence, the translation value that minimizes the full
Procrustes fit is given by (a + jb) = 0, while the scale s = 1. The rotation
angle θ that minimizes the Full Procrustes fit is given by θ = arg(|α∗β|).
The partial Procrustes distance between configurations X and Y is obtained
by matching their respective preshapes α and β as closely as possible over
rotations, but not scale. So,

dPartial(X,Y ) = inf
ΓǫSO(d)

‖ β − αΓ ‖ . (11)

It is interesting to note that the optimal rotation θ is the same whether we
compute the full Procrustes distance or the partial Procrustes distance. The
Procrustes distance ρ(X,Y ) is the closest great circle distance between α and
β on the preshape sphere. The minimization is done over all rotations. Thus
ρ is the smallest angle between complex vectors α and β over rotations of α
and β. The three distance measures defined above are all trigonometrically
related as

dFull(X,Y ) = sin ρ(X,Y ), dPartial(X,Y ) = 2 sin(
ρ(X,Y )

2
). (12)
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3.2.1 Tangent Structure of the Special Manifolds

If M/H is a quotient space of M under the action of a group H ⊂ M
(assuming H acts on M), then, for any point p ∈ M , a vector v ∈ Tp(M)
is also tangent to M/H as long as it is perpendicular to the tangent space
Tp(pH). Here, Tp(pH) is considered as a subspace of Tp(M). We will use this
idea to find tangent spaces on Sn,d, Gn,d, and Kendall’s shape space, using
the tangent structure of SO(n).

1. Tangent Structure of Sn,d: Since Sn,d = SO(n)/φ1(SO(n − d)), set
M = SO(n) and H = φ1(SO(n − d)), with φ1 as defined in Eqn. 6. Let
J ∈ R

n×d be a tall-skinny matrix, made up of the first d columns of In;
J acts as the “identity” element in Sn,d. A vector in TIn(SO(n)), that is
perpendicular to Tφ1(In−d)(InSO(n − d)), when multiplied on right by J
results in a tangent to Sn,d at J . This gives:

TJ(Sn,d) = {
[

C
−BT

]

|C = −CT , C ∈ R
d×d, B ∈ R

d×(n−d)} . (13)

For any other point U ∈ Sn,d, let Q ∈ SO(n) be a matrix that rotates the
columns of U to align with the columns of J , i.e. let U = QTJ . Note that
the choice of Q is not unique. It follows that the tangent space at U is
given by: TU (Sn,d) = {QTG|G ∈ TJ (Sn,d)}.

2. Tangent Structure of Gn,d: In this case, set M = SO(n) and H =
φ2(SO(d) × SO(n − d)), with φ2 as given in Eqn. 7. Using the same ar-
gument made before, the vectors tangent to SO(n) and perpendicular to
the space (TId(SO(d)) × TIn−d

(SO(n − d))), will also be tangent to Gn,d
after multiplication on right by J . Thus, the tangent space at [J ] ∈ Gn,d
is given by:

T[J](Gn,d) = {
[

0
−BT

]

| B ∈ R
d×(n−d)} (14)

For any other point [U ] ∈ Gn,d, let Q ∈ SO(n) be a matrix such that U =
QTJ . Then, the tangent space at [U ] is given by TU (Gn,d) = {QTG|G ∈
TJ(Gn,d)}.

3. Tangent Structure of Kendall’s Shape Space: The pre-shape formed
by n points lie on a n−1 dimensional complex hypersphere of unit radius.
The Procrustes tangent coordinates of a preshape α are given by

v(α, µ) = αα∗µ− µ|α∗µ|2. (15)

where µ is the Procrustes mean shape of the data.

So far we have introduced several manifolds of interest – namely S
n, Sn,d

and Gn,d – and have defined their geometries, including their tangent spaces,
Riemannian metrics, geodesics and exponential maps. Now we consider the
task of studying statistics on these manifolds.
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4 Statistical Inference on Manifolds

What are the challenges in performing a statistical analysis if the underlying
state space is non-Euclidean? Take the case of the simplest statistic, the
sample mean, for a sample set (x1, x2, . . . , xn) on R

n:

x̄k =
1

k

k
∑

i=1

xi, xi ∈ R
n . (16)

Since x̄k is a widely used and studied statistic, one already knows the pros
and cons of using x̄k as an estimate of the population mean. For example, we
know that x̄k is an unbiased and efficient estimator, but it is susceptible to
the outliers. Now what if the underlying space is not Rn but a non-Euclidean
manifold instead? To answer this question we consider an n-dimensional Rie-
mannian manifold M . Let d(p, q) denote the length of the shortest geodesic
between arbitrary points p, q ∈ M . To facilitate a general discussion, we
will assume that there exists an embedding ε : M → V where V is an m-
dimensional Hilbert space (n ≤ m). We have chosen V to be a vector space
so that we can perform a statistical analysis in V using standard techniques
from multivariate calculus. The distance between any two elements p, q ∈M
is the geodesic distance d(p, q) when the geodesic is restricted to be inM and
it is ‖ε(p) − ε(q)‖, with the norm of V , when the geodesic is allowed to be
in V . The latter distance, of course, depends on the choice of the embedding
ε. We start the analysis by assuming that we are given a probability density
function f on M . This function, by definition, satisfies the properties that
f : M → R≥0 and

∫

M
f(p)dp = 1, where dp denotes the reference measure

on M with respect to which the density f is defined. We can extend f to the
larger set V by simply setting:

f̃(x) =

{

f(p) if x = ε(p), p ∈M
0 if x 6∈ ε(M)

. (17)

Naturally, f̃ is a probability density function on V . There are two possibilities
for computing statistics on M – intrinsic and extrinsic. We describe them
next.

4.1 Intrinsic Statistics

The first question that we consider is: What is a suitable notion of mean on
the Riemannian manifold M? A popular method for defining a mean on a
manifold was proposed by Karcher [24] who used the centroid of a density as
its mean.



Statistical Analysis on Manifolds and its applications to Video Analysis 15

Definition 2 (Karcher Mean [24]). The Karcher mean µint of a probabil-
ity density function f onM is defined as local minimizer of the cost function:
ρ :M → R≥0, where

ρ(p) =

∫

M

d(p, q)2f(q) dq . (18)

dq denotes the reference measure used in defining the probability density f
on M . The value of function ρ at the Karcher mean is called the Karcher
variance. How does the definition of Karcher mean adapt to the sample set,
i.e. a finite set of points drawn from an underlying probability distribution?
Let q1, q2, . . . , qk be independent random samples from the density f . Then,
the sample Karcher mean of these points is defined to be the local minimizer
of the function:

ρk(p) =
1

k

k
∑

i=1

d(p, qi)
2 . (19)

An iterative algorithm for computing the sample Karcher mean is as follows.
Let µ0 be an initial estimate of the Karcher mean. Set j = 0.

1. For each i = 1, . . . , k, compute the tangent vector vi such that the geodesic
from µj , in the direction vi, reaches qi at time one, i.e. ψ1(µj , vi) = qi or
vi = exp−1

µj
(qi).

2. Compute the average direction v̄ = 1
k

∑k
i=1 vi.

3. If ‖v̄‖ is small, then stop. Else, update µj in the update direction using

µj+1 = ψǫ(µj , v̄),

where ǫ > 0 is small step size, typically 0.5. ψt(p, v) denotes the geodesic
path starting from p in the direction v parameterized by time t. In other
words, µj+1 = expµj

(ǫv̄).
4. Set j = j + 1 and return to Step 1.

It can be shown that this algorithm converges to a local minimum of the cost
function given in Eqn. 19 which by definition is µint. Depending upon the
initial value µ0 and the step size ǫ, it converges to the nearest local minimum.

We exploit the fact that the tangent spaces ofM are vector spaces and can
provide a domain for defining covariances. We can transfer the probability
density f from M to a tangent space Tp(M), using the inverse exponential
map, and then use the standard definition of central moments in that vector
space. For any point p ∈ M , let p → v ≡ exp−1

µ (p) denote the inverse
exponential map at µ from M to Tµ(M). The point µ maps to the origin
0 ∈ Tµ(M) under this map. Now, we can define the Karcher covariance
matrix as:

Kint =

∫

Tµ(M)

vvT fv(v)dv, v = exp−1
µ (q) ,
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where fv is the induced probability density on the tangent space. For a finite
sample set, the sample Karcher variance is given by

K̂int =
1

k − 1

k
∑

i=1

viv
T
i , where vi = exp−1

µ (qi) . (20)

4.2 Extrinsic Statistics

The other possibility for performing statistics is to use the vector space struc-
ture of V to simplify calculations. In this case one transfers the probability
measure to V , computes the pertinent statistical quantities in V and projects
the final results back to M . Let Π : V → M be a projection map defined in
such a way that

Π(v) = argminp∈M‖v − ε(p)‖2 . (21)

The existence and the uniqueness of Π, of course, depend on the nature of
M , p and ε. Now, the extrinsic mean of a density f onM is defined as follows.

Definition 3 (Extrinsic Mean). The extrinsic mean of density f on M ,
specified with respect to an embedding ε of M in a larger vector space V , is
given by

µext = Π(ν),

where:

• Π is the projection defined in Eqn. 21,
• ν =

∫

V
vf̃(v)dv is the standard mean of f̃ in V , and

• f̃ is the unique extension of f from M to V (given by Eqn. 17).

Once the embedding ε has been chosen, and a mechanism for projection
Π has been established, the rest of the process is quite straightforward. It
requires computing the mean of f̃ in V and projecting it down to M . In case
M is a Euclidean space, the projection is simply the identity operation and
the extrinsic mean coincides with the classical mean. Additionally, in this
case, if the Euclidean metric is chosen as the Riemannian metric, then the
intrinsic mean also coincides with the classical mean.

What about the covariance analysis in an extrinsic framework? An extrin-
sic covariance can be defined similar to the extrinsic mean. Let π : V →
Tν(M) be any linear map. Since it is a linear map, it can be written as a
n×m matrix A so that π(v) = Av. Define the covariance

Kv =

∫

V

(v − ν)(v − ν)tf̃(v)dv ,

in the vector space V and project it using:

Kext = AKvA
T . (22)
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The advantages and disadvantages of an extrinsic mean, with respect to
the Karcher mean, are straightforward. The main advantage is its compu-
tational simplicity. Once an embedding ε is chosen, the rest of the analysis
is quite standard and typically very fast. In contrast, computation of the
Karcher mean requires repeated computations of the exponential and inverse
exponential maps. The disadvantage is that the result Π(ν) depends on the
choice of embedding ε which is quite arbitrary. Different embeddings will
result in different solutions, and the projection Π itself may not be unique.

Example 7. (Extrinsic Mean of Subspaces) As discussed in section 3.2,
the Grassmann manifold can be viewed as a quotient space of the set of full-
rank n×d orthonormal matrices. We can also associate to each d-dimensional
subspace an n × n idempotent projection matrix P of rank d (not to be
confused with the projection operation Π), such that P = Y Y T , where Y is
a point on the Sn,d whose columns span the subspace. The space of n × n
projectors of rank d, denoted by Pn,d can be embedded into the set of all
n × n matrices – R

n×n – which is a vector space. The projection Π from
R
n×n to Pn,d is given by

Π(M) = UUT ,where M = USV T is the d-rank SVD of M. (23)

Using this embedding, we can define an extrinsic distance metric on the
Grassmann manifold using the distance metric inherited from R

n×n.

d2(P1, P2) = tr(P1 − P2)
T (P1 − P2) (24)

Given a set of sample points on the Grassmann manifold represented
uniquely by projectors {P1, P2, . . . , PN}, we can compute the extrinsic mean
by first computing the mean of the Pi’s and then projecting the solution to
the manifold by means of equation (23). i.e.

µext = Π(Pavg), where Pavg =
1

N

N
∑

i=1

Pi (25)

4.3 Learning Distributions from Data

In addition to sample statistics such as the mean and covariance, it is possible
to define parametric probability distribution functions on manifolds. The in-
trinsic distributions are defined on the manifolds of interest directly without
embedding them into a vector space. Examples of such distributions include
the Langevin distribution for spherical data. Another intrinsic way of defin-
ing probability distributions is to project parametric distributions onto the
manifold of interest. In addition to intrinsic methods such as these, we can
estimate extrinsic distributions as well.
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Example 8. (Intrinsic Density Estimation) Suppose, we have n sample
points, given by q1, q2, ...qn from a manifold M. Then, we first compute their
Karcher mean q̄ as discussed before. The next step is to define and compute
a sample covariance for the observed qi’s. The key idea here is to use the fact
that the tangent space Tq̄(q) is a vector space. For a d-dimensional manifold,
the tangent space at a point is also d dimensional. Using a finite-dimensional
approximation, say V ⊂ Tq̄(q), we can use the classical multivariate calculus
for this purpose. The resulting sample covariance matrix is given by:

Σ̄ =
1

n− 1

n
∑

i=1

viv
T
i

where each vi is a d-dimensional sample of the function exp−1
q̄ qi. Note that

by definition, the mean of vis should be zero. In cases where the number of
samples n is smaller than d, one can apply an additional dimension-reduction
tool to work on a smaller space. For instance, we can use the singular value
decomposition (SVD) of the sample covariance matrix Σ̄ and retain only
the top m significant singular values and the corresponding singular vectors.
In such cases, the covariance matrix is indirectly stored using λ1, λ2, ...λm
singular values and their corresponding singular vectors u1, u2, ...um.

The exponential map: expq̄ : Tq̄(q) → M maps this covariance back to
M. Specifically, this approach is widely used to define wrapped-Gaussian
densities on a given manifold. In general, one can define arbitrary pdfs on
the tangent plane such as mixtures of Gaussians, Laplace etc and project it
back to the manifold via the exponential map. This allows us to experiment
with and choose an appropriate pdf that works well for a given problem
domain.

Example 9. (Extrinsic Densities using Kernels) Here we discuss density
estimation over the Grassmann manifold using extrinsic methods proposed
by [12]. Given two orthonormal bases Y1 and Y2 we define the distance be-
tween the subspaces as the smallest squared Euclidean distance between their
corresponding equivalence classes on the Stiefel manifold. Hence,

d2([Y1], [Y2]) = min
R∈SO(d)

tr(Y1 − Y2R)
T (Y1 − Y2R) (26)

This distance is called the Procrustes distance [12]. This minimization can
be solved in closed form. It is possible to relax the constraint that R ∈ SO(d)
to R ∈ GL(d). In this case, the minimum is attained at R = A and the
distance is given by d2(Y1, Y2) = tr(Ik − ATA), where A = Y T1 Y2. We refer
the reader to [12] for derivations and other cases. Using this interpretation,
we can define extrinsic statistics on the Grassmann manifold. Here, we discuss
a non-parametric method for estimation of pdfs. Given several samples from
a pdf, represented by orthonormal basis (Y1, Y2, . . . , Yn), the density can be
estimated using extrinsic methods and the Procrustes metric [12] as
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f̂(Y ;M) =
1

n
C(M)

n
∑

i=1

K[M−1/2(Ik − Y T
i Y Y TYi)M

−1/2] (27)

where K(T ) is the kernel function, M is a k × k positive definite matrix
which plays the role of the kernel width or a smoothing parameter. C(M) is
a normalizing factor chosen so that the estimated density integrates to unity.

5 Applications and Experiments

In this section, we present several examples where an understanding of the
manifold that the data lies on can provide a principled means of solving the
problem. The examples we discuss include 1. human gait analysis, 2. activity
analysis via state-space modeling and 3. modeling execution-rate variations
in human activities.

5.1 Feature Space Manifold: Kendall’s Shape Sphere

for Human Gait Analysis

Shape analysis plays a very important role in object recognition, matching
and registration. There has been substantial work in shape representation
and on defining a feature vector which captures the essential attributes of
the shape. A description of shape must be invariant to translation, scale and
rotation. The Kendall’s shape space is a natural feature to use in such cases.
Given a binary image consisting of the silhouette of a person, we extract the
shape from this binary image. The procedure for obtaining shapes from the
video sequence is graphically illustrated in Figure 3(a). Note that each frame
of the video sequence maps to a point on the spherical shape manifold.

Consider a situation where there are two shape sequences and we wish
to compare how similar these two shape sequences are. One may want to
use non-parametric sequence matching such as Dynamic-Time warping or a
parametric approach such as state-space modeling. In either case, we need
to take into account the geometry of the shape-manifold for matching. Con-
sider dynamic time warping, which has been successfully used by the speech
recognition [34] community for performing non-linear time normalization.
Pre-shape, as we have already discussed lies on a spherical manifold. In our
experiments, we use the Procrustes shape distance described in section 3.2
during the DTW distance computations. For state-space modeling such as
autoregressive (AR) or ARMA, we use the tangent structure of the mani-
fold. We project a given sequence to the tangent plane constructed at the
mean-point. The AR and ARMA model parameters are then estimated on
the tangent-planes. The tangent structure for Kendall’s shape manifold was
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discussed in 3.2.1. Once the model parameters are estimated, computing sim-
ilarity between two sequences can be performed by computing the distance
between the model parameters. We refer the reader to [48] for details of
model fitting and computing similarity between the model-parameters. Next,
we present some experiments that demonstrate the utility of these methods.

5.1.1 Gait Recognition Experiment on the USF Gait Database

The USF database [35] consists of 71 people in the Gallery. Various covari-
ates such as camera position, shoe type, surface and time were varied in
a controlled manner to design a set of challenge experiments1[35]. On the
USF database we conducted experiments on recognition performance using
these methods- Stance Correlation, DTW on shape space, Stance based AR
(a slight modification of the AR model [48]) and the ARMA model. Gait
recognition experiments were designed for challenge experiments A-G. These
experiments featured and tested the recognition performance against various
covariates like the camera angle, shoe type, surface change etc. Refer to [35]
for a detailed description of the various experiments and the covariates in
these experiments. Figure 3(b) shows a comparison of the identification rate
(rank 1) of the various shape and kinematics based algorithms. It is clearly
seen that shape-based algorithms perform better than purely kinematics-
based algorithms.

(a)
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Fig. 3 (a)Graphical illustration of the sequence of shapes obtained during a walking cycle,
(b)Bar Diagram comparing the identification rate of various algorithms.

1 Challenge Experiments:Probes A-G in increasing order of difficulty.
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5.2 Model Space Manifold: Grassmann manifold for

Human Activity Analysis

Modeling of human activities is an important problem in video-understanding.
Applications of activity recognition include activity-based indexing, biomet-
rics, motion synthesis, and anomaly detection. Human activity analysis typ-
ically proceeds in a hierarchical fashion. At lower-levels, some features per-
taining to motion of the human are extracted from video sequences such
as optical flow or background subtracted masks. Then, a model is imposed
on the feature evolution such as Hidden Markov Models (HMMs) or Linear
Dynamic Systems (LDS). Given training data, the goal is to estimate the
model parameters. Here we study ARMA models and show that the study
of these models can be formulated as a study of the geometry of the Grass-
mann manifold. A wide variety of time series data such as dynamic textures,
human joint angle trajectories, shape sequences, video based face recognition
etc are frequently modeled as ARMA models [37, 6, 48, 2]. The ARMA model
equations are given by

f(t) = Cz(t) + w(t) w(t) ∼ N(0, R) (28)

z(t+ 1) = Az(t) + v(t) v(t) ∼ N(0, Q) (29)

where, z is the hidden state vector, A the transition matrix and C the
measurement matrix. f represents the observed features while w and v are
noise components modeled as normal with 0 mean and covariance R and Q
respectively.

The model parameters (A,C) learned as above do not lie on a Euclidean
space. The transition matrix A is constrained to be stable with eigenvalues
inside the unit circle. The observation matrix C is constrained to be an
orthonormal matrix. Now, starting from an initial condition z(0), it can be
shown that the expected observation sequence is given by
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z(0) = O∞(M)z(0) (30)

Thus, the expected observation sequence generated by a time-invariant
model (A,C) lies in the column space of the extended observability matrix
given by O∞ = [CT , (CA)T , (CA2)T , ...]T . However, motivated by the fact
that human actions are of a finite-duration in time and not infinitely ex-
tending in time, we can simplify the study of the model by considering only
an n-length expected observation sequence instead of the infinite sequence as
above. Let the size of the temporal window be n. Thus, the n-length expected
observation sequence generated by the model (A,C) lies in the column space
of the finite observability matrix given by
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OTn =
[

CT , (CA)T , (CA2)T , . . . (CAn−1)T
]

(31)

We can thus identify a dynamical model by a point on the Grassmann
manifold, corresponding to the subspace spanned by the columns of the ob-
servability matrix. Since, the geometry of the Grassmann manifold is known
we can use its geometry as discussed in sections 3.2 and 3.2.1 to define dis-
tances, exponential maps, and statistics (section 4) for video classification.

5.2.1 INRIA iXMAS Activity Recogntion Experiment

We performed a recognition experiment on the publicly available INRIA
dataset [50]. The dataset consists of 10 actors performing 11 actions, each
action executed 3 times at varying rates while freely changing orientation.
We used the view-invariant representation and features as proposed in [50].
Specifically, we used the 16× 16× 16 circular FFT features proposed by [50].
Each activity was modeled as a linear dynamical system. Testing was per-
formed using a round-robin experiment where activity models were learnt us-
ing 9 actors and tested on 1 actor. In table 1, we show the recognition results
obtained using four methods. The first column shows the results obtained
using dimensionality reduction approaches of [50] on 16 × 16 × 16 features.
[50] reports recognition results using a variety of dimensionality reduction
techniques (PCA, LDA, Mahalanobis) and here we choose the row-wise best
performance from their experiments (denoted ‘Best Dim. Red.’) which were
obtained using 64×64×64 circular FFT features. The third column presents
results using the method of using subspace angles based distance between
dynamical models [13]. This is closely related to the geodesic on the Grass-
mann manifold for finite observability matrices. Column 4 shows the nearest-
neighbor classifier performance using Procrustes metric on the Grassmann
manifold (16 × 16 × 16 features). We see that the manifold Procrustes dis-
tance performs as well as subspace angles. But, statistical modeling of class
conditional densities for each activity using parametric and non-parametric
methods, leads to a significant improvement in recognition performance. In
addition to activity analysis and ARMA modeling, we refer the reader to
[45] for more example applications of statistical modeling on the Grassmann
manifold in computer vision applications.

5.2.2 Activity based Summarization

The ARMA model described above in conjunction with statistical models on
the Grassmann manifold can be used to summarize long videos. Towards this
purpose, we describe long videos as outputs of time-varying ARMA models
given by
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Activity Dim. Red.
[50] 163 vol-
ume

Best Dim.
Red. [50]

643 volume

Subspace
Angles 163

volume

Procrustes
Metric 163

volume

Wrapped
Normal
163 volume

Extrinsic
Kernel 163

volume

Check Watch 76.67 86.66 93.33 90 100 100
Cross Arms 100 100 100 96.67 96.67 100
Scratch Head 80 93.33 76.67 90 100 96.67
Sit Down 96.67 93.33 93.33 93.33 90 93.33
Get Up 93.33 93.33 86.67 80 96.67 96.67
Turn Around 96.67 96.67 100 100 96.67 100
Walk 100 100 100 100 100 100
Wave Hand 73.33 80 93.33 90 90 100
Punch 83.33 96.66 93.33 83.33 100 100
Kick 90 96.66 100 100 93.33 100
Pick Up 86.67 90 96.67 96.67 93.33 100
Average 88.78 93.33 93.93 92.72 96.06 98.78

Table 1 Comparison of view invariant recognition of activities in the INRIA dataset
using a) Best DimRed [50] on 16× 16× 16 features, b) Best Dim. Red. [50] on 64× 64× 64
features, c) Nearest Neighbor using Subspace angles (16 × 16 × 16 features) d) Nearest
Neighbor using Procrustes distance (16× 16× 16 features), e) Maximum likelihood using
wrapped Gaussian(16×16×16 features) f) Maximum likelihood using Parzen windows on
the Grassmann manifold (16× 16× 16 features)

f(t) = C(t)z(t) + w(t) w(t) ∼ N(0, R(t)) (32)

z(t+ 1) = A(t)z(t) + v(t) v(t) ∼ N(0, Q(t)) (33)

Note that here the model parameters (A,C,Q,R) are allowed to vary with
time. Further, we assume that the model parameters change slowly with
time so that they can be approximated as locally constant. Thus, parameter
estimation is done in short-temporal windows (say of length 20 frames). This
gives rise to a sequence of model parameters Mt = (At, Ct). Each element
in the sequence can be considered to be a point on the Grassmann manifold
arising due to the time-varying observability matrix.

On(Mt) =
[

Ct;CtAt; . . . ;CtA
n−1
t

]

(34)

Thus, the time-varying model can be viewed as a sequence of subspaces St,
where each subspace is spanned by the columns of the observability matrix
at the corresponding time instant. Thus, the sequence of subspaces can be
seen as a trajectory on the Grassmann manifold. To compactly represent the
subspace variations, we parametrize the trajectory using a switching model
akin to the HMM on the Grassmann manifold. This representation can be
used to provide a visual summarization of long videos [43]. The clusters of
the HMM represent the distinct actions in the video e.g. spins, leaps, glides
for the case of skating. The transition structure between the clusters repre-
sents how the overall activity in the video proceeds. In this experiment we
show the results of summarizing a long video containing a complex activ-
ity – the game of Blackjack. For this, we used the dataset reported in [51].
A few sample frames from the dataset are shown in figure 4. The game of
Blackjack consists of a few elements such as dealing cards, waiting for bids,
shuffling the cards etc. We try to estimate a Grassmann switching model for
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the entire video of Blackjack. The Grassmann switching model would then
represent a ‘summary’ of the game, where the clusters of the model represent
various elements of the game and the switching structure represents how the
game progresses. This video consists of about 1700 frames. We extracted the
motion-histogram features as proposed in [51] for each frame of the video.
The time-varying model parameters are estimated in sliding windows of size
10. The dimension of the state vector is chosen to be d = 5. To estimate the
Grassmann switching model for the game of Blackjack, we manually set the
number of clusters to 5. In figure 5(a), we show an embedding of the video
obtained from the model parameters using Laplacian eigenmaps. Each point
corresponds to a time-invariant model parameter (A,C) pair or equivalently
a point on the Grassmann manifold. Each cluster was found to correspond
to a distinct element of the game as shown. The switching structure between
the clusters is encoded in the transition matrix and is shown in figure 5(b).
Similar ARMA models were also used in [44] for summarizing a long skating
video sequence.

Fig. 4 A few sample frames from the Blackjack dataset of [51].
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Fig. 5 (a) An embedding of the entire Blackjack video sequence. Figure best viewed in
color. (b) Estimated structure of the game of Blackjack. (For the sake of clarity arcs with
low weights have not been shown)
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5.3 Transformation Space Manifold: Hilbert Sphere

for modeling execution-rate variations in activities

In activity recognition, different instances of the same activity may consist
of varying relative speeds at which the actions are executed, in addition to
other intra- and inter- person variabilities. Most existing algorithms for ac-
tivity recognition are not very robust to intra- and inter-personal changes of
the same activity, and are sensitive to warping of the temporal axis due to
variations in speed profile. Results on gait-based person identification shown
in [7] indicate that it is very important to take into account the temporal
variations in the person’s gait. In [49], it was shown that accounting for exe-
cution rate enhances recognition performance for action recognition. Typical
approaches for accounting for variations in execution rate are either directly
based on the dynamic time warping (DTW) algorithm [34] or some variation
of this algorithm [49].

For now, let us assume that for each frame of the video, an appropriate
feature has been extracted and that the video data has now been converted
into a feature sequence given by f1, f2, ..., for frames 1, 2, ... respectively.
We will use F to denote the feature space associated with the chosen feature.
Let γ be a diffeomorphism (A diffeomorphism is a smooth, invertible function
with a smooth inverse) from [0, 1] to itself with γ(0) = 0 and γ(1) = 1. Also,
let Γ be the set of all such functions. We will use elements of Γ to denote time
warping functions. Our model for an activity consists of an average activity
sequence given by a : [0, 1] → F , a parameterized trajectory on the feature
space. Any time-warped realization of this activity is then obtained using:

r(t) = a(γ(t)), γ ∈ Γ . (35)

Equation (35) actually defines an action of Γ on F [0,1], the space of all
continuous activities. In our model, the variability associated with γ in each
class will be modeled using a distribution Pγ on Γ. For the convenience of
analysis and computation, we prefer to work with ψ = +

√
γ̇ instead of γ

directly. There is a bijection between γ and ψ and the probability models on ψ
directly relate to equivalent models on γ. Thus, we will introduce probability
distributions Pψ on the set of all ψs, for each activity class.

The parameters of this model are a(t), the nominal activity trajectory,
and Pψ, the probability distribution on square-root representations of time
warping functions. In general, the nominal activity trajectory a(t) can also
be chosen to be random. Here, we restrict our analysis to cases where the
nominal activity trajectory a(t) is deterministic but unknown. We will con-
sider parametric forms of densities for Pψ and reduce the problem of learning
Pψ to one of learning the parameters of the distribution Pψ.

Let the space of all square-root density forms be given by

Ψ = {ψ : [0, 1] → R|ψ ≥ 0,

∫ 1

0

ψ2(t)dt = 1} . (36)
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This is the positive orthant of a unit hypersphere in the Hilbert space of all
square-integrable functions on [0, 1]. Let Tψ(Ψ) be the tangent space to Ψ at
any given point ψ. Then, for any v1 and v2 in Tψ(Ψ), the Fisher-Rao metric
is given by

〈v1, v2〉 =
∫ 1

0

v1(t)v2(t)dt. (37)

Since Ψ is a sphere, its geometry is well known and we can directly use
known expressions for geodesics, exponential maps, and inverse exponential
maps on Ψ as discussed in sections 3.2 and 3.2.1. Consequently, the algo-
rithms for computing sample statistics, defining probability density functions,
and generating inferences also become straightforward.

5.3.1 Common Activities Dataset

We used the UMD common activities dataset [49], a dataset of common activ-
ities to perform preliminary experiments to validate our model. The dataset
consists of 10 activities and 10 different instances of each activity. We par-
tition the dataset into 10 disjoint sets each containing 1 instance of every
activity. In order to test the recognition performance for each set, we first
learn the model parameters from the remaining nine sets and then perform
recognition for the test sequences. We repeat the process for each of the 10
sets. Thus we ensure that there is no overlap between the training set and the
test sequences. Figure 6 shows the 10 × 100 similarity matrix for using the
function space algorithm with the uniform distribution on the space of tem-
poral warps. Each column corresponds to a different test sequence while each
row corresponds to a different activity. The strongly block diagonal nature
of the similarity matrix indicates that the recognition algorithm performs
well. In fact, on this database we obtained 100% recognition using both our
algorithms.

(f)  Kick                   (g) Bend to the side    (h) Throw      (i) Turn around     (j) Talk on Cellphone
(a) Pick up Object    (b) Jog in Place          (c) Push        (d) Squat             (e) Wave                  

(a) (b) (c) (e) (f) (g) (h) (j)(i)(d)

Fig. 6 10 X 100 Similarity matrix of 100 sequences and 10 different activities using the
function space algorithm.
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5.3.2 USF Gait Database

Since the model for learning the function space of time-warpings is not ex-
plicitly dependent on the choice of features, one could potentially use the
same model to learn individual specific function spaces in order to perform
activity-based person identification. The only difference would be that we
would choose a feature that is person-specific (e.g., silhouette). The nominal
activity trajectory would be individual specific in this case. Various external
conditions (such as surface, shoe) induce systematic time-warping variations
within the gait signatures of each individual. The function space of temporal
warpings for each individual amounts to learning the class of person specific
warping functions. By learning the function space of these variations we are
able to account for the effects of such external conditions.

In order to compare the performance of our algorithm with the current
state of the art algorithms, we also performed a gait-based person identifica-
tion experiment on the publicly available USF gait database [35]. The USF
database consists of 71 people in the Gallery. Various covariates like camera
position, shoe type, surface and time were varied in a controlled manner to
design a set of challenge experiments[35]. We performed a round-robin recog-
nition experiment in which one of the challenge sets was used as test while
the other seven were used as training examples. The process was repeated for
each of the seven challenge sets on which results have been reported. Table
2 shows the identification rates of our algorithm with a uniform distribution
on the space of warps (PUnif ), our algorithm with a wrapped Gaussian dis-
tribution on the tangent space of warps with shape as a feature and with
binary image feature (PGauss and PGaussIm). For comparison the table also
shows the baseline algorithm [35], simple DTW on shape features [48] and the
image-based HMM [23] algorithm on the USF dataset for the 7 probes A-G.
Since most of these other algorithms could not account for the systematic
variations in time-warping for each class the recognition experiment they
performed was not round robin but rather used only one sample per class
for learning. Therefore, to ensure a fair comparison, we also implemented a
round-robin experiment using the linear warping (PLW ).

The average performance of our algorithms PUnif and PGauss are better than
all the other algorithms that use the same feature, (DTW/HMM (Shape)[48]
and Linear warping PLW ) and is also better than the baseline[35] and
HMM[23] algorithms that use the image as a feature. The improvement in
performance while using binary image as a feature is shown in the last col-
umn (PGaussIm). The experimental results presented here clearly show that
using multiple training samples per class and learning the distribution of
their time warps makes significant improvement to gait recognition results.
While most algorithms based on learning from a single sample led to over-
fitting and therefore performed much better when the gallery was similar
to the probe (Probe A-C), they also performed very poorly when the gallery
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Table 2 Comparison of Identification rates on the USF dataset. Note that the experimen-
tal results reported in this table contain varying amounts of training data. While columns
2-6 (Baseline - pHMM) used only the gallery sequences for training, the results reported in
columns 7-10 (PLW - PGaussIm) used all the probes except the test probe during training.

Pr- Base- DTW HMM HMM pHMM PLW PUnif PGauss PGaussIm

obe line Shape Shape Image [29]

Avg. 42 42 41 50 65 51.5 59 59 64

A 79 81 80 96 85 68 70 78 82

B 66 74 72 86 89 51 68 68 78

C 56 52 56 74 72 51 81 82 76

D 29 29 22 32 57 53 40 50 48

E 24 20 20 28 66 46 64 51 54

F 30 19 20 17 46 50 37 42 56

G 10 19 19 21 41 42 53 40 55

and the probes were significantly different. But, since our algorithm has good
generalization ability the performance of our algorithm did not suffer from
overfitting and therefore did not drop as much when moving from probes A-C
to Probes D-G.

6 Conclusions

In this chapter we provided a brief overview of the usefulness and effectiveness
of statistical analysis on manifolds to specific applications in video analysis.
Typical video analysis is usually composed of three stages of processing -
feature extraction, building models and accounting for transformation in-
variance. We highlight three different applications of manifold analysis, one
for each of the three stages in a typical video analysis framework. We de-
scribe Kendall shape manifold for shape feature representation. We show the
applicability of the Grassmann manifold for understanding dynamical mod-
els. Finally, we show the space of time-warp transformations as a spherical
manifold of functions. In all applications, we show experiments that illustrate
the superior performance of algorithms that exploit the geometric properties
of the underlying manifold.
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