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Abstract

We show that, via temporal modulation, one can observe a high-speed periodic event well beyond
the abilities of a low-frame camera. By strobing the exposure with unique sequences within the
integration time of each frame, we take coded projections of dynamic events. From a sequence
of such frames, we reconstruct a high-speed video of the high frequency periodic process. Strob-
ing is used in entertainment, medical imaging and industrial inspection to generate lower beat
frequencies. But this is limited to scenes with a detectable single dominant frequency and re-
quires high-intensity lighting. In this paper, we address the problem of sub-Nyquist sampling of
periodic signals and show designs to capture and reconstruct such signals. The key result is that
for such signals the Nyquist rate constraint can be imposed on strobe-rate rather than the sensor-
rate. The technique is based on intentional aliasing of the frequency components of the periodic
signal while the reconstruction algorithm exploits recent advances in sparse representations and
compressive sensing. We exploit the sparsity of periodic signals in Fourier domain to develop
reconstruction algorithms that are inspired by compressive sensing.
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Abstract—We show that, via temporal modulation, one can
observe a high-speed periodic event well beyond the abilities
of a low-frame rate camera. By strobing the exposure with
unique sequences within the integration time of each frame,
we take coded projections of dynamic events. From a sequence
of such frames, we reconstruct a high-speed video of the high
frequency periodic process. Strobing is used in entertainment,
medical imaging and industrial inspection to generate lower
beat frequencies. But this is limited to scenes with a detectable
single dominant frequency and requires high-intensity lighting.
In this paper, we address the problem of sub-Nyquist sampling of
periodic signals and show designs to capture and reconstruct such
signals. The key result is that for such signals the Nyquist rate
constraint can be imposed on strobe-rate rather than the sensor-
rate. The technique is based on intentional aliasing of the fre-
quency components of the periodic signal while the reconstruction
algorithm exploits recent advances in sparse representations and
compressive sensing. We exploit the sparsity of periodic signals
in Fourier domain to develop reconstruction algorithms that are
inspired by compressive sensing.

Index Terms—Computational imaging, High-speed imaging,
Compressive sensing, Stroboscopy

I.I NTRODUCTION

Periodic signals are all around us. Several human and animal
biological processes such as heart-beat, breathing, several cel-
lular processes, industrial automation processes and everyday
objects such as hand-mixer and blender all generate periodic
processes. Nevertheless, we are mostly unaware of the inner
workings of some of these high-speed processes because they
occur at a far greater speed than can be perceived by the human
eye. Here, we show a simple but effective technique that can
turn an off-the-shelf video camera into a powerful high-speed
video camera for observing periodic events.

Strobing is often used in entertainment, medical imaging and
industrial applications to visualize and capture high-speed
visual phenomena. Active strobing involves illuminating the
scene with a rapid sequence of flashes within a frame time. The
classic example is Edgerton’s Rapatron to capture a golf swing
[13]. In modern sensors, it is achieved passively by multiple-
exposures within a frame time [37][28] or fluttering [29]. We
use the term ‘strobing’ to indicate both active illumination and
passive sensor methods.

In case of periodic phenomenon, strobing is commonly used
to achieve aliasing and generate lower beat frequencies. While
strobing performs effectively when the scene consists of a
single frequency with a narrow sideband, it is difficult to visu-
alize multiple or a wider band of frequencies simultaneously.
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Fig. 1: Coded strobing camera (CSC): A fast periodic visual
phenomenon is recorded by a normal video camera (25 fps) by
randomly opening and closing the shutter at high speed (2000

Hz). The phenomenon is accurately reconstructed from the captured
frames at the high-speed shutter rate (2000 fps).

Instead of direct observation of beat frequencies, we exploit a
computational camera approach based on different sampling
sequences. The key idea is to measure appropriate linear
combinations of the periodic signal and then decode the signal
by exploiting the sparsity of the signal in Fourier domain.
We observe that by coding during the exposure duration of
a low-frame-rate (e.g.,25 fps) video camera, we can take
appropriate projections of the signal needed to reconstruct a
high-frame-rate (e.g.,2000 fps) video. During each frame, we
strobe and capture a coded projection of the dynamic event
and store the integrated frame. After capturing several frames,
we computationally recover the signal independently at each
pixel by exploiting the Fourier sparsity of periodic signals.
Our method of coded exposure for sampling periodic signals
is termed ‘coded strobing’ and we call our camera the ‘coded
strobing camera’ (CSC). Figure 1 illustrates the functioning
of CSC.

A. Contributions

• We show that sub-Nyquist sampling of periodic visual
signals is possible and that such signals can be captured
and recovered using a coded strobing computational
camera.

• We develop a sparsity-exploiting reconstruction algorithm
and expose connections to Compressive Sensing.

• We show that the primary benefit of our approach over
traditional strobing is, increased light-throughput and
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ability to tackle multiple frequencies simultaneously post-
capture.

B. Benefits and limitations
The main constraint for recording a high-speed event is
light throughput . We overcome this constraint for periodic
signals via sufficient exposure duration (in each frame) and
extended observation window (multiple frames). For well-
lit non-periodic events, high-speed cameras are ideal. For
a static snapshot, a short exposure photo (or single frame
of the high-speed camera) is sufficient. In both cases, light
throughput is limited but unavoidable. Periodic signals can
also be captured with high-speed camera. But one will need
a well-lit scene or must illuminate it with unrealistic bright
lights. For example, if we use a2000 fps camera for vocal
cord analysis instead of strobing using a laryngoscope, we
would need a significantly brighter illumination source and
this creates the risk of burn injuries to the throat. A safer
option would be25 fps camera with strobed light source and
then exploit the periodicity of vocal fold movement. Here, we
show that an even better option in terms of light-throughput
is a computational camera approach. Further, the need to
know frequency of the signal at capture-time is also avoided.
Moreover, the computational recovery algorithm can tackle
the presence of multiple fundamental frequencies in a scene,
which poses a challenge to traditional strobing.

C. Related work
High-speed imaging hardware:Capturing high-speed events
with fast, high-frame rate cameras require imagers with high
photoresponsivity at short integration times, synchronous ex-
posure and high-speed parallel readout due to the necessary
bandwidth. In addition, they suffer from challenging storage
problems. A high-speed camera also fails to exploit the inter-
frame coherence, while our technique takes advantage of
a simplified model of motion. Edgerton and others have
shown visually stunning results for high-speed objects using
extremely narrow-duration flash [13]. These snapshots capture
an instant of the action but fail to indicate the general
movement in the scene. Multiple low-frame rate cameras can
be combined to create high-speed sensing. Using a staggered
exposure approach, Shechtman et al. [34] used frames captured
by multiple co-located cameras with overlapped exposure
time. This staggered exposure approach also assisted a novel
reconfigurable multi-camera array [38]. Although there are
very few methods to super-resolve a video temporally [15],
numerous super-resolution techniques have been proposed
to increase the spatial resolution of images. In [17], super-
resolution technique to reconstruct a high-resolution image
from a sequence of low-resolution images was proposed by
backprojection method. A method to do super-resolution on
a low quality image of a moving object by first tracking it,
estimating motion and deblurring the motion blur and creating
a high quality image was proposed in [4]. Freeman et al. [14]
proposed a learning based technique for superresolution from
one image where the high frequency components like edges
of an image are filled by patches obtained from examples with
similar low resolution properties. Finally, fundamental limits

on super-resolution for reconstruction based algorithms have
been explored in [1][22].

Stroboscopy and periodic motion:Stroboscopes (from Greek
wordστρωβωσ for ‘whirling’) play an important role in scien-
tific research, to study machinery in motion, in entertainment
and medical imaging. Muybridge in his pioneering work used
multiple triggered cameras to capture high-speed motion of
animals [25] and proved that all four of a horse’s hooves left
the ground at the same time during a gallop. Edgerton also
used flashing lamp to study machine parts in motion [13]. The
most common approaches for “freezing” or “slowing down”
the movement are based on temporal aliasing. In medicine,
stroboscopes are used to view the vocal cords for diagnosis.
The patient hums or speaks into a microphone which in turn
activates the stroboscope at either the same or a slightly lower
frequency [20],[31]. However, in all healthy humans, vocal-
fold vibrations are aperiodic to a greater or lesser degree.
Therefore, strobolaryngoscopy does not capture the fine detail
of each individual vibratory cycle; rather, it shows a pattern
averaged over many successive nonidentical cycles [24][33].
Modern strobocopes for machine inspection [11] are designed
for observing fast repeated motions and for determining RPM.
The idea can also be used to improve spatial resolution by
introducing high-frequency illumination [16].

Processing:In computer vision, periodic motion of humans
has received significant attention. Seitz et al. [32] introduced
a novel motion representation, called the period trace, that
provides a complete description of temporal variations in a
cyclic motion, which can be used to detect motion trends and
irregularities. A technique to repair videos with large static
background or cyclic motion was presented in [18]. Laptev et
al. [19] presented a method to detect and segment periodic
motion based on sequence alignment without the need for
camera stabilization and tracking. [5] exploited periodicity
of moving objects to perform 3D reconstruction by treating
frames with same phase to be of same pose observed from
different views. In [35], the authors showed a strobe based
approach for capturing high-speed motion using multiexposure
images obtained within a single frame of a camera. The images
of a baseball appear as distinct non-overlapping positions
in the image . High temporal and spatial resolution can be
obtained via a hybrid imaging device which consists of a high
spatial resolution digital camera in conjunction with a high
frame-rate but low resolution video camera [6]. In cases where
the motion can be modeled as linear, there have been several
interesting methods to engineer the motion blur point spread
function so that the blur induced by the imaging device is
invertible. These include coding the exposure [30] and moving
the sensor during the exposure duration [21]. The method
presented in this paper tackles a different but broadly related
problem of reconstructing periodic signals from very low-
speed images acquired via a conventional video camera (albeit
enhanced with coded exposure).

Comparison with flutter shutter: In [30], the authors showed
that by opening and closing the shutter according to an
optimized coded pattern during the exposure duration of a
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photograph, one can preserve high-frequency spatial details in
the blurred captured image. The image can be then de-blurred
using a manually specified point-spread function. Similarly,
we open and close the shutter according to a coded pattern
and this code is optimized for capture. Nevertheless, thereare
significant differences in motion models and reconstruction
procedures of both these methods. In flutter shutter (FS), a
constant velocity linear motion model was assumed and de-
blurring was done in blurred pixels along the motion direction.
On the other hand, CSC works even on very complicated
motion models as long as the motion is periodic. In CSC
each of the captured frames is the result of modulation with
a different binary sequence whereas in FS a single frame is
modulated with a ‘all-pass’ code. Further, our method contrasts
fundamentally with FS in reconstruction of the frames. In
FS the system of equations is not under-determined whereas
in CSC we have a severely under-determined system. We
overcome this problem byℓ1-norm regularization, appropriate
for enforcing sparsity of periodic motion in time. In FS a
single system of equations is solved for entire image whereas
in CSC at each pixel we temporally reconstruct the periodic
signal by solving an under-determined system.

D. Capture and reconstruction procedure
The sequence of steps involved in capture and reconstruction
of a high-speed periodic phenomenon with typical physical
values are listed below with references to appropriate sections
for detailed discussion.

• Goal: Using a25 fps camera and a shutter which can
open and close at2000 Hz, capture a high-speed periodic
phenomenon of unknown period by observing for 5s.

• The length of the binary code needed isN = 2000×5 =
10000. For an upsampling factor ofU = 2000/25 =
80, find the optimal pseudo random code of lengthN
(Section III-A).

• CaptureM = 25 × 5 = 125 frames by fluttering the
shutter according to the optimal code. Each captured
frame is an integration of the incoming visual signal
modulated with a corresponding subsequence of binary
values of lengthU = 80 (Section II-C).

• Estimate the fundamental frequency of the periodic signal
(Section II-D3).

• Using the estimated fundamental frequency, at each pixel
reconstruct the periodic signal of lengthN = 10000 from
M = 125 values by recovering the signal’s sparse Fourier
coefficients (Section II-D).

II.STROBING AND L IGHT MODULATION

A. Traditional sampling techniques
Sampling is the process of converting a continuous domain
signal into a set of discrete samples in a manner that allows
approximate or exact reconstruction of the continuous domain
signal from just the discrete samples. The most fundamental
result in sampling is that of Nyquist-Shannon sampling the-
orem. Figure 2 provides a graphical illustration of traditional
sampling techniques applied to periodic signals.

Nyquist sampling: Nyquist-Shannon sampling states that
when a continuous domain signal is band-limited to[0 , f0]

Hz, one can exactly reconstruct the band-limited signal, by
just observing discrete samples of the signal at a sampling
ratefs greater than2f0 [27]. When the signal has frequency
components that are higher than the prescribed band-limit,then
during the reconstruction, the higher frequencies get aliased as
lower frequencies making the reconstruction erroneous (see
Figure 2(Right)(c)). If the goal is to capture a signal whose
maximum frequencyfMax is 1000 Hz, then one needs a high-
speed camera capable of2000 fps in order to acquire the
signal. Such high-speed video cameras are light limited and
expensive.

Band-pass sampling (strobing):If the signal is periodic as
shown in Figure 2(Left)(a), then we can intentionally alias
the periodic signal by sampling at a frequency very close to
the fundamental frequency of the signal as shown in Figure
2(Left)(e). This intentional aliasing allows us to measure
the periodic signal. This technique is commonly used for
vocal fold visualization [24][33]. However, traditional strobing
suffers from the following limitations. The frequency of the
original signal must be known at capture-time so that one
may perform strobing at the right frequency. Secondly, the
strobe signal must be ‘ON’ for a very short duration so
that the observed high-speed signal is not smoothed out and
this makes traditional strobing light-inefficient. Despite this
handicap, traditional strobing is an extremely interesting and
useful visualization tool (and has found several applications
in varying fields).

Non-uniform sampling: With periodic sampling, aliasing
occurs when the sampling rate is not adequate because, all
frequencies of the formf1+k·fs (k an integer) lead to identical
samples. One method to counter this problem is to employ
non-uniform or random sampling [7][23]. The key idea in non-
uniform sampling [7][23] is to ensure a set of sampling instants
such that the observation sequence for any two frequencies
are different at least in one sampling instant. This scheme has
never found widespread practical applicability because ofits
noise sensitivity and light inefficiency.

B. Periodic signals
Since, the focus of this paper is on high-speed video captureof
periodic signals, we first study the properties of such signals.

1) Fourier domain properties of periodic signals:Consider a
signal x(t), which has a periodP = 1/fP and a bandlimit
fMax. Since the signal is periodic, we can express it as,

x(t) = xDC +

j=Q
∑

j=1

aj cos(2πjfP t) + bj sin(2πjfP t) (1)

Therefore, the Fourier transform of the signalx(t) contains
energy only in the frequencies corresponding tojfP , where
j ∈ {−Q,−(Q−1), ...0, 1, ..., Q}. Thus, a periodic signal has
a maximum of(K = 2Q + 1) non-zero Fourier coefficients.
Therefore, periodic signals by definition, have a very sparse
representation in the Fourier domain. Recent advances in
the field of compressed sensing (CS) [12][9][2][8][36] have
developed reliable recovery algorithms for inferring sparse rep-
resentations if one can measure arbitrary linear combinations
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Fig. 2: Time domain (Left) and the corresponding frequency domain (Right) characteristics of various sampling techniques as applicable
to periodic signals. Note that capturing high-speed visualsignals using normal camera can result in attenuation of high frequencies (b & c)
whereas a high-speed camera demands large bandwidth (d) andtraditional strobing is light-inefficient (e). Coded strobing is shown in (f).
To illsutrate sampling only two replicas have been shown andnote that colors used in time domain and frequency domain areunrelated.

of the signals. Here, we propose and describe a method for
measuring such linear combinations and use the reconstruction
algorithms inspired by CS to recover the underlying periodic
signal from its low-frame-rate observations.

2)Effect of visual texture on periodic motion:Visual texture on
surfaces exhibiting periodic motion introduces high frequency
variations in the observed signal (Figure 3(d)). As a very
simple instructive example consider the fan shown in Figure
3(a). The fan rotates at a relatively slow rate of8.33 Hz. This
would seem to indicate that in order to capture the spinning
fan one only needs a16.66 fps camera. During exposure time
of 60 ms of a 16.66 Hz camera, the figure ‘1’ written on
the fan blade completes about half a revolution blurring it
out (Figure 3(b)). Shown in Figure 3(c) is the time profile
of the intensity of a single pixel using a high-speed video
camera. Note that the sudden drop in intensity due to the
dark number ‘1’ appearing on the blades persists only for
about 1 millisecond. Therefore, we need a1000 fps high-
speed camera to observe the ‘1’ without any blur. In short, the
highest temporal frequency observed at a pixel is a product of
the highest frequency of the periodic event in time and the
highest frequency of the spatial pattern on the objects across
the direction of motion. This makes the capture of high-speed
periodic signals with texture more challenging.

3) Quasi-periodic signals:Most real world “periodic signals”
are not exactly so, but almost; there are small changes in the
period of the signal over time. We refer to such broader class

of signals as quasi-periodic. For example, the Crest toothbrush
we use in our experiments exhibits a quasi-periodic motion
with fundamental frequency that varies between63 − 64 Hz.
Figure 4(a) shows few periods of a quasi-periodic signal at
a pixel of a vibrating tooth brush. Variation in fundamen-
tal frequencyfP , between63 and 64 Hz, over time can
be seen in (b). Variation infP of a quasi-periodic signal
is reflected in its Fourier transform which contains energy
not just at multiplesjfP but in small band aroundjfP .
Nevertheless, like periodic signals, the Fourier coefficients
are concentrated atjfP (Figure 4(c)) and are sparse in the
frequency domain. The coefficients are distributed in a band
[jfP − j∆fP , jfP + j∆fP ]. For example,∆fP = 0.75 Hz
in Figure 4(d).

C. Coded exposure sampling (or Coded strobing)

The key idea is to measure appropriate linear combinations of
the periodic signal and then recover the signal by exploiting
the sparsity of the signal in Fourier domain (Figure 5). Ob-
serve that by coding the incoming signal during the exposure
duration, we take appropriate projections of the desired signal.

1) Camera observation model:Consider a luminance signal
x(t). If the signal is band-limited to[−fMax , fMax], then in
order to accurately represent and recover the signal, we only
need to measure samples of the signal that areδt = 1/(2fMax)
apart whereδt represents the temporal resolution with which
we wish to reconstruct the signal. If the total time of observing



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

(a) A frame from high speed video (b) A frame from 16.66 fps video 
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we notice that the signal energy is concentrated in a band around
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the signal isNδt, then theN samples can be represented in
a N dimensional vectorx.

In a normal camera, the radiance at a single pixel is integrated
during the exposure time, and the sum is recorded as the
observed intensity at a pixel. Instead of integrating during
the entire frame duration, we perform amplitude modulation
of the incoming radiance values, before integration. Then the
observed intensity valuesy at a given pixel can be represented
as

y = Cx+ η, (2)

where theM×N matrixC performs both the modulation and
integration for frame duration, andη represents the observation
noise. Figure 5 shows the structure of matrixC. If the camera
observes a frame everyTs seconds, the total number of
frames/observations would beM = Nδt/Ts and soy is a
M × 1 vector. The camera sampling timeTs is far larger than
the time resolution we would like to achieve (δt), therefore
M << N . The upsampling factor (or decimation ratio) of
CSC can be defined as,

Upsampling factor= U =
N

M
=

2fMax

fs
. (3)

For example, in the experiment shown in Figure 15,fMax =
1000 Hz, andfs = 25 fps. Therefore, the upsampling factor
achieved is80, i.e., the frame-rate of CSC is eighty times
smaller than that of an equivalent high-speed video camera.
Even though, the modulation function can be arbitrary, in
practice it is usually restricted to be binary (open or close
shutter). Effective modulation can be achieved with codes that
have a50% transmission, i.e., the shutter is in ‘ON’ position
for 50% of the total time, thereby limiting light-loss at capture-
time to just50%.

2) Signal model:If x, the luminance at a pixel is bandlimited
it can be represented as,

x = Bs, (4)

where, the columns ofB contain Fourier basis elements.
Moreover, since the signalx(t) is assumed to be periodic,
we know that the basis coefficient vectors is sparse as shown
in Figure 5. Putting together the signal and observation model,
the intensities in the observed frames are related to the basis
coefficients as,

y = Cx+ η = CBs+ η = As+ η, (5)

whereA is the effective mixing matrix of the forward process.
Recovery of the high-speed periodic motionx amounts to
solving the linear system of equations (5).

D. Reconstruction algorithms

To reconstruct the high-speed periodic signalx, it suffices to
reconstruct its Fourier coefficientss from modulated intensity
observationsy of the scene.

Unknowns, measurements and sparsity:In (5), the number
of unknowns exceeds the number of known variables by a
factorU (typically 80) and hence the system of equations (5)
is severely under-determined (M << N ). To obtain robust
solutions, further knowledge about the signal must be used.
Since the Fourier coefficientss, of a periodic signalx, are
sparse, a reconstruction technique enforcing sparsity ofs could
still hope to recover the periodic signalx.

We present two reconstruction algorithms, one which enforces
the sparsity of the Fourier coefficients and is inspired by
compressive sensing and other which additionally enforcesthe
structure of the sparse Fourier coefficients.
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1) Sparsity enforcing reconstruction:Estimating a sparse
vectors (with K non-zero entries) that satisfiesy = As + η,
can be formulated as anℓ0 optimization problem:

(P0) : min||s||0 s.t ||y −As||2 ≤ ǫ. (6)

Although for generals this is a NP-hard problem, forK
sufficiently small the equivalence betweenℓ0 and ℓ1-norm
[8] allows us to reformulate the problem as one ofℓ1-norm
minimization, which is a convex program with very efficient
algorithms [12][8][2].

(P1) : min||s||1 s.t ||y −As||2 ≤ ǫ (7)

The parameterǫ allows for the variation in the modeling
of signal’s sparsity and/or noise in the observed frames. In
practice, it is set to a fraction of captured signal energy
(e.g., ǫ = 0.03||y||2) and is dictated by the prior knowledge
about camera noise in general and the extent of periodicity of
the captured phenomenon. An interior point implementation
(BPDN) of (P1) is used to accurately solve fors. Instead,
in most experiments in this paper, at the cost of minor
degradation in performance we use CoSaMP [26], a faster
greedy algorithm to solve (P0). Both (P0) and (P1) don’t
take into account the structure in the sparse coefficients of
the periodic signal. By additionally enforcing structure of the
sparse coefficientss, we achieve robustness in recovery of the
periodic signal.

2) Structured sparse reconstruction:We recall that
periodic/quasi-periodic signals are (a) sparse in the Fourier ba-
sis and (b) if the period isP = 1/fP , the only frequency con-
tent the signal has is in the small bands at the harmonicsjfP ,
j an integer. Often, the periodP is not known a priori. If the
period is known or can be estimated from the datay, then for
a hypothesized fundamental frequencyfH , we can construct
a setSfH with basis elements[jfH − ∆fH , jfH + ∆fH ],
for j ∈ {−Q, ...0, 1, ..., Q} such that all the sparse Fourier
coefficients will lie in this smaller set. Now the problem (P0)
can instead be reformulated as

M frames from 
coded strobing 

camera

Estimate 
fundamental 
frequency fP

Construct set 
SfH of possible 
Fourier coeff.

Recover Fourier coeff. 
s for every pixel by 

solving BPDN

5 3 0 5 4 0 5 5 0 5 6 0 5 7 0 5 8 0 5 9 0
0
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0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

T im e

 

 

O r ig in a l  s ig n a l
S t r u c tu re d  s p a r s i t y
S p a r s i ty  e n fo rc in g

Recover Fourier coeff. 
s for every pixel by 

solving BPDNSparsity enforcing 
reconstruction

Structured sparse 
reconstruction

(b)

(a)

Fig. 6: (a) Overview of structured sparse and sparsity enforcing
reconstruction algorithms (b) Five periods of a noisy (SNR=35 dB)
periodic signalx (P = 14 units). Signal recovered by structured and
normal sparsity enforcing reconstruction are also shown.

(PStructured) : min||s||0 s.t (8)

||y −As||2 ≤ ǫ and

nonZero(s) ∈ SfH for somefH ∈ [0 , fMax].

where nonZero(s) is a set containing all the non-zero el-
ements in the reconstructeds. Since the extent of quasi-
periodicity is not known a priori, the band∆fH is chosen
safely large and the non-zero coefficients continue to remain
sparse in the setSfH . Intuitively, problemPStructured gives
a better sparse solution compared to (P0) since the non-zero
coefficients are searched over a smaller setSfH . An example
of a periodic signal and its recovery usingsparsity enforcing
(P1) andstructured sparsityare shown in Figure 6(b). The
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recovery usingPStructured is exact whereas (P0) fails to
recover the high-frequency components.

The restatement of the problem provides two significant ad-
vantages. Firstly, it reduces the problem search space of the
original ℓ0 formulation. To solve the originalℓ0 formulation,
one has to search overNCK sets. For example, if we observe
a signal for5 seconds at1 ms resolution, thenN is 5000
and NCK is prohibitively large (10212 for K = P =
100). Secondly, this formulation implicitly enforces the quasi-
periodicity of the recovered signal and this extra constraint
allows us to solve for the unknown quasi-periodic signal with
far fewer measurements than would otherwise be possible. The
type of algorithms which exploit further statistical structure in
the support of the sparse coefficients come under model-based
compressive sensing [3].

3) Knowledge of fundamental frequency: Structured sparse
reconstruction performs better over a larger range of upsam-
pling factors and since the structure of non-zero coefficients is
dependent on fundamental frequencyfP , we estimate it first.

Identification of fundamental frequency: For both periodic
and quasi-periodic signals we solve a sequence of least-square
problems to identify the fundamental frequencyfP . For a
hypothesized fundamental frequencyfH , we build a setSfH

with only the frequenciesjfH (for both periodic and quasi-
periodic signals). Truncated matrixAfH is constructed by
retaining only the columns with indices inSfH . Non-zero
coefficientsŝfH are then estimated by solving the equation
y = AfHsfH in a least-squares sense. We are interested infH
which has a small reconstruction error‖y − ŷfH‖ (or largest
output SNR) wherêyfH = AfH ŝfH . If fP is the fundamental
frequency, then all the setsSfH , wherefH is a factor offP ,
will provide a good fit to the observed signaly. Hence, the
plot of output SNR has multiple peaks corresponding to the
good fits. From these peaks we pick the one with largestfH . In
Figure 7, we show results of experiments on synthetic datasets,
under two scenarios: noisy signal and quasi-periodicity. We
note that even when (a) the signal is noisy and (b) when the
quasi-periodicity of the signal increases, the last peak inthe
SNR plot occurs at fundamental frequencyfP . We generate
quasi-periodic signals from periodic signals by warping the
time variable. Note that, solving a least squares problem for
a hypothesized fundamental frequencyfH is equivalent to
solving Pstructured with ∆fH = 0. Setting∆fH = 0 eases
the process of finding the fundamental frequency by avoiding
the need to set the parameter∆fH appropriate for both the
captured signal andfH . This is especially useful for quasi-
periodic signals where a priori knowledge of quasi-periodicity
is not available.

III.D ESIGN ANALYSIS

In this section, we analyze important design issues and gain
a better understanding of the performance of coded strobing
method through experiments on synthetic examples.

A. Optimal code for coded strobing

Theoretically optimal code: The optimization problems (6)
and (7) give unique and exact solutions provided the under-
determined matrixA satisfies therestricted isometry property
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Fig. 7: Identifying the fundamental frequencyfP . Output SNR
||y||/||y − ŷfH || in dB is plotted against hypothesized fundamental
frequencyfH . (a) Plot of SNR as the noise iny is varied. Note that
the last peak occurs atfH = 165 (= N

P
). (b) Plot of SNR with

varying level of quasi-periodicity.

(RIP) [10]. Since the location of theK non-zeros of the sparse
vector s which generates the observationy is not known
a priori, RIP demands that all sub-matrices ofA with 2K
columns have a low condition number. In other words, every
possible restriction of2K columns are nearly orthonormal and
hence isometric. Evaluating RIP for a matrix is a combinatorial
problem since it involves checking the condition number of all
NC2K submatrices.

Alternately, matrix A satisfies RIP if every row ofC is
incoherent with every column ofB. In other words, no row
of C can be sparsely represented by columns ofB. Tropp et
al. [36] showed in a general setting that if the code matrix
C is drawn from a IID Rademacher distribution, the resulting
mixing matrixA satisfies RIP with a high probability. It must
be noted that a modulation matrixC with entries ‘+1’, ‘-1’
is implementable but would involve using a beam splitter and
two cameras in place of one. Due to ease of implementation
(details in section IV), for modulation we use a binary ‘1’,
‘0’ code matrixC as described in section II-C1. For a given
signal lengthN and an upsampling factorU we would like
to pick a binary ‘1’, ‘0’ code which results in mixing matrix
A, optimal in the sense of RIP.

Note that the sparsity of quasi-periodic signals is structured
and the non-zero elements occur at regular intervals. Hence,
unlike the general setting, RIP should be satisfied and eval-
uated over only a select subset of columns. Since the fun-
damental frequencyfP of the signal is not known a priori, it
suffices if the isometry is evaluated over a sequence of matrices
Ā corresponding to hypothesized fundamental frequencyfH .
Hence, for a givenN andU , a code matrixC which results in
smallest condition number over all the sequence of matrices
Ā is desired. In practice, such aC is sub-optimally found by
randomly generating the binary codes tens of thousand times
and picking the best one.

Compared to a normal camera, CSC blocks half the light
but captures all the frequency content of the periodic signal.
The sinc response of the box filter of a normal camera
attenuates the harmonics near its zeros as well as the higher
frequencies as shown in Figure 2(b). To avoid the attenuation
of harmonics, the frame duration of the camera has to be
changed appropriately. But, this is undesirable since most
cameras come with a discrete set of frame rates. Moreover, it
is hard to have a priori knowledge of the signal’s period. This
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Fig. 8: Time domain (Left) and corresponding frequency domain (Right) understanding of CSC. Shown in (a) is a single sinusoid. (b),(c) &
(d) show the effect of coded strobing capture on the sinusoid. (e) coded strobing capture of multiple sinusoids is simplya linear combination
of the sinusoids.

problem is entirely avoided by modulating the incoming signal
with a pseudo-random binary sequence. Shown in Figure 8 is
the temporal and frequency domain visualization of the effect
of CSC on a single harmonic. Modulation with a pseudo-
random binary code spreads the harmonic across the spectrum.
Thus, every harmonic irrespective of its position avoids the
attenuation, the sinc response causes.

We perform numerical experiments to show the effectiveness
of CSC (binary code) over the normal camera (all ‘1’ code).
Shown in Table I are the comparison of the largest and smallest
condition numbers of the matrix̄A arising in CSC and normal
camera. Consider the second column (U = 25). For a given
signal lengthN = 5000 and upsampling factorU = 25, the
largest condition number (1.8×1019) of mixing matrix Ā of a
normal camera occurs for signal of periodP = 75. Similarly,
the smallest condition number occurs forP = 67. On the other
hand, the mixing matrixĀ of CSC has significantly lower
maximum (atP = 9) and minimum (atP = 67) condition
numbers.

Performance evaluation:We perform simulations on periodic
signals to compare the performance ofsparsity enforcingand
structured sparsereconstruction algorithms on CSC frames,
structured sparsereconstruction on normal camera frames and
traditional strobing. SNR plots of the reconstructed signal
using the four approaches for varying periodP , upsampling
factor U and noise level iny are shown in Figure 9. The
signal length is fixed toN = 2000 units. The advantage of
structured sparsereconstruction is apparent from comparing
blue and red plots. The advantage of CSC over normal camera
can be seen by comparing blue and black plots. Note that the
normal camera performs poorly when the upsampling factor
U is a multiple of the periodP .

B. Experiments on a synthetic animation

We perform experiments on a synthetic animation of a fractal
to show the efficacy of our approach. We also analyze the
performance of the algorithm under various noisy scenarios.
We assume that at everyδt = 1 ms, a frame of the animation
is being observed and that the animation is repetitive with
P = 25 ms (25 distinct images in the fractal). Three such
frames are shown in Figure 10(a). A normal camera running
at fs = 25 fps will integrate40 frames of the animation into a
single frame, resulting in blurred images. Three images from
a 25 fps video are shown in (b). By performing amplitude
modulation at the shutter, as described in II-C1, the CSC
obtains frames at the same rate as that of the normal camera
(25 fps) but with the images encoding the temporal movement
occurring during the integration process of the camera sensor.
Three frames from the CSC are shown in (c). Note that
in images (b) & (c) and also images in other experiments
we rescaled the intensities appropriately for better display.
For our experiment, we observe the animation for5 seconds
(N = 5000) resulting inM = 125 frames. From these125
frames we recover frequency content of the periodic signal
being observed by enforcing sparsity in reconstruction as de-
scribed in II-D. We comparestructured sparsereconstruction
on normal camera frames,normal sparseandstructured sparse
reconstruction on CSC frames and the results are shown in
(d),(e) and (f) respectively. It is important to modulate the
scene with a code to capture all frequencies and enforcing
both sparsity and structure in reconstruction ensures thatthe
periodic signal is recovered accurately.

Noise analysis and influence of upsampling factor:We
perform statistical analysis on the impact of two most common
sources of noise in CSC and also analyze the influence of
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Condition Number κ / Period P U = 25 U = 40 U = 47 U = 55 U = 63 U = 91

NC: largest 1.8× 10
19/75 8.6× 10

33/5 6.1× 10
32/47 4.5× 10

65/95 3.4× 10
64/90 6.5× 10

48/70
CSC: largest 1.3× 103/9 1.4× 104/7 6.0× 103/8 2.1× 104/19 8.1× 102/27 2.4× 103/7
NC: smallest 5.9× 102/67 8.4× 102/63 1.5× 103/54 2.7× 102/92 1.5× 103/80 1.6× 103/55
CSC: smallest 16.5/67 11.5/94 10.1/98 9.7/90 10.9/77 13.2/53

TABLE I: Table comparing the largest and smallest condition numbersof mixing matrixĀ corresponding to normal (NC)
and coded strobing exposure (CSC).
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Fig. 9: Performance analysis of structured and normal sparsity enforcing reconstruction for CSC and structured sparsity enforcing
reconstruction for normal camera: (a) Reconstruction SNR as the periodP increases. (b) Reconstruction SNR as upsampling factorU
increases. (c) Reconstruction SNR as the noise iny is varied.

upsampling factor on reconstruction. We recover the signal
using structured sparsityenforcing reconstruction. First, we
study the impact of sensor noise. Figure 11(a) shows the
performance of our reconstruction with increasing noise level
η. We fixed the upsampling factor atU = 40 in these
simulations. The reconstruction SNR varies linearly with the
SNR of the input signal in accordance with compressive
sensing theory. The second most significant source of errors
in a CSC are errors in the implementation of the code due to
lack of synchronization between the shutter and the camera.
These errors are modeled as bit-flips in the code. Figure 11(b)
shows the resilience of the coded strobing method to such
bit-flip errors. The upsampling factor is again fixed at40.
Finally, we are interested in an understanding of how far the
upsampling factor can be pushed without compromising on the
reconstruction quality. Figure 11(c) shows the reconstruction
SNR as the upsampling factor increases. This indicates thatby
using structured sparsity enforcing reconstruction algorithm,
we can achieve large upsampling factors with a reasonable
fidelity of reconstruction. Using the procedure described in
previous section we estimate the fundamental frequency as
fp = 40 Hz (Figure 11(d)).

IV.EXPERIMENTAL PROTOTYPES

A. Hi-speed video camera
In order to study the feasibility and robustness of the proposed
camera, we first tested the approach using a high-speed video
camera. We used an expensive1000 fps video camera, and
captured high-speed video. We had to use strong illumination
sources to light the scene and capture reasonably noise-free
high-speed frames. We then added several of these frames
(according to the strobe code) in software to simulate low
speed coded strobing camera frames. The simulated CSC
frames were used to reconstruct the high-speed video. Some
results of such experiments are reported in Figure 12.

B. Sensor integration mechanism
We implement CSC for our experiments using an off-the-shelf
Dragonfly2 camera from PointGrey Research [28], without
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Fig. 11: Performance analysis of CSC: (a) Reconstruction SNR
as the observation noise increases. (b) Impact of bit-flips in binary
exposure sequence. (c) Coded strobing camera captures the scene
accurately upto an upsampling factorU = 50. (d) ||y||/||y − ŷ||
against varying hypothesized fundamental frequencyfH .

modifications. The camera allows a triggering mode (Multiple
Exposure Pulse Width Mode- Mode 5) in which the sensor
integrates the incoming light when the trigger is ‘1’ and is
inactive when the trigger is ‘0’. The trigger allows us exposure
control at a temporal resolution ofδt = 1 ms. For every
frame we use a unique triggering sequence corresponding
to a unique code. The camera outputs the integrated sensor
readings as a frame after a specified number of integration
periods. Also, each integration period includes at its end a
period of about30 ms during which the camera processes the
integrated sensor readings into a frame. The huge benefit of
this setup is that it allows us to use an off-the-shelf camerato
slow down high-speed events around us. On the other hand,
the hardware bottleneck in the camera restricts us to operate
at an effective frame rate of10 fps (100 ms) and a strobe rate
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(a) Original frames

(b) Normal camera capture

(c) Coded strobing capture

Recon SNR
17.8dB

(d) Structured sparse 
recovery: CSC

Recon SNR
7.2dB

(e) Structured sparse 
recovery: Normal camera

Recon SNR
7.5dB

(f) Sparsity enforcing
recovery: CSC

Fig. 10: (a) Original frames of the fractal sequence which repeat every P = 25 ms. (b) Frames captured by a normal 25 fps camera.
(c) Frames captured by a CSC running at 25 fps. (d) Frames reconstructed by enforcing structured sparsity on CSC frames. (e) Frames
reconstructed by enforcing structured sparsity on normal camera frames. (f) Frames reconstructed by enforcing simplesparsity on CSC
frames. Overall5 seconds (N = 5000) of the sequence was observed to reconstruct it back fully. Upsampling factor was set atU = 40

(M = 125) corresponding toδt = 1 ms. Note that image intensities in (b) and (c) have been rescaled appropriately for better display.

of 1000 strobes/second (δt = 1 ms).

C. Ferro-electric shutter

The PointGrey Dragonfly2 provides exposure control with
a time resolution of1 ms. Hence, it allows us a temporal
resolution ofδt = 1 ms at recovery time. However, when the
maximum linear velocity of the object is greater than 1 pixel
per ms, the reconstructed frames have motion blur. One can
avoid this problem with finer control over the exposure time.
For example, a DisplayTech ferro-electric liquid crystal shutter
provides an ON/OFF contrast ratio of about1000 : 1, while
simultaneously providing very fast switching time of about
250µs. We built a prototype where the Dragonfly2 captures the
frames at usual25 fps and also triggers a PIC controller after
every frame which in turn flutters the ferro-electric shutter
with a new code at a specified temporal frequency. In our
experiment we set the temporal resolution at500µs i.e.2000
strobes/second.

D. Retrofitting commercial stroboscopes

Another exciting alternative to implement CSC is to retrofit
commercial stroboscopes. Commercial stroboscopes used in
laryngoscopy usually allow the strobe light to be triggeredvia
a trigger input. Stroboscopes that allow such an external trigger
for the strobe can be easily retrofitted to be used as a CSC.
The PIC controller used to trigger the ferro-electric shutter
can instead be used to synchronously trigger the strobe light
of the stroboscope, thus converting a traditional stroboscope
to a coded stroboscope.

V.EXPERIMENTAL RESULTS

To validate our design we conduct two kinds of experiments.
In the first experiment, we capture high-speed videos and
then generate CSC frames by appropriately adding frames of
the high-speed video. In the second set of experiments we
captured videos of fast moving objects with a low-frame-rate
CSC implemented using a Dragonfly2 video camera.

A. High-speed video of toothbrush

We capture a high-speed (1000 fps) video of a pulsating Crest
toothbrush with quasi-periodic linear and oscillatory motions
at about 63 Hz. Figure 4(b) shows the frequency of the
toothbrush as a function of time. Notice that even within a
short window of30 seconds, there are significant changes in
frequency. We render a100 fps, 20 fps, 10 fps CSC (i.e.,
a frame duration of10 ms, 50 ms, 100 ms respectively) by
adding appropriate high-speed video frames, but reconstruct
the moving toothbrush images at a resolution of1 ms as shown
in Figures 12(c)-(e) respectively. Frames of the CSC operating
at 100, 20 and10 fps (U = 10, 50 and100 respectively) are
shown in Figure 12(b). The fine bristles of the toothbrush add
high frequency components because of texture variations. The
bristles on the circular head moved almost 6 pixels within1
ms. Thus the captured images from the high-speed camera
themselves exhibited blur of about 6 pixels which can be seen
in the recovered images. Notice that contrary to what it seems
to the naked eye, the circular head of the toothbrush does not
actually complete a rotation. It just exhibits oscillatorymotion
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(a)Hi-speed capture at 1000fps

(b)
(b) Coded strobing capture

U=10 U=50 U=100

Recon SNR = 20.8dB Recon SNR = 16.4dB Recon SNR = 13. 6dB

(c) Structured sparse recovery
U=10 U=50 U=100

t1 t3t2

t1

t2

t3

Fig. 12: Reconstruction results of an oscillating toothbrush underthree different capture parameters (U ): Images for simulation captured
by a 1000 fps high-speed camera at time instancest1, t2 and t3 are shown in (a). The second row (b) shows a frame each from thecoded
strobing capture (simulated from frames in (a)) at upsampling factorsU = 10, 50, and 100 respectively. Reconstruction at time instances
t1, t2 and t3 from the frames captured atU = 10 are shown in first column of (c).

of 45 degrees and we are able to see it from the high-speed
reconstruction.

(b)

(a)

Recon SNR = 20.8dB

Recon SNR = 13.2dB

Fig. 13: Reconstruction results of toothbrush with upsampling factor
U = 10 without and with15 dB noise in (a) and (b) respectively.

(b)

(a)

Recon SNR = 16.4dB

Recon SNR = 13.0dB

Structured sparse recovery
Coded Strobing Camera

Structured sparse recovery
Normal Camera

Fig. 14: Reconstruction results of toothbrush with upsampling
factor U = 50 using structured sparse reconstruction and sparsity
promoting super-resolution.

To test the robustness of coded strobing capture and recovery

on the visual quality of images, we corrupt the observed
imagesy with white noise havingSNR = 15 dB. The results
of the recovery without and with noise are shown in Figure 13.

We compare frames recovered from CSC to those recovered
from a normal camera (by enforcing structured sparsity) to
illustrate the effectiveness of modulating the frames. Normal
camera doesn’t capture the motion in the bristles as well
(Figure 14) and is saturated.

B. Mill-tool results using ferro-electric shutter
We use a Dragonfly2 camera with a ferro-electric shutter and
capture images of a tool rotating in a mill. Since the tool can
rotate at speeds as high as12000 rpm (200 Hz), to prevent
blur in reconstructed images we use the ferro-electric shutter
for modulation with a temporal resolution of0.5 ms. The
CSC runs at25 fps (40 ms frame length) with the ferro-
electric shutter fluttering at2000 strobes/second. Shown in
Figure 15 are the reconstructions at2000 fps (δt = 0.5 ms) of
a tool rotating at3000, 6000, 9000 and 12000 rpm. Without
a priori knowledge of scene frequencies, we use the same
strobed coding and the same software decoding procedure for
the mill tool rotating at different rpm. This shows that we can
capture any sequence of periodic motion with unknown period
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(a) 3000 RPM (b) 6000 RPM (c) 9000 RPM (d) 12000 RPM

Fig. 15: Tool bit rotating at different rpm captured using coded strobing: Top row shows the coded images acquired by a PGR Dragonfly2
at 25 fps, with an external FLC shutter fluttering at2000 Hz. (a)-(d) Reconstruction results, at2000 fps (temporal resolutionδt = 500µs),
of a tool bit rotating at3000, 6000, 9000 and 12000 rpm respectively. For better visualization, the tool was painted with color prior to the
capture.

(a) Frame from 10 fps 
camera

(b) Frames reconstructed from a 10 fps Dragonfly2 c oded 
strobing  camera ( U = 100 )

Fig. 16: Demonstration of CSC at upsampling factorU = 100 using
Dragonfly2. (a) Captured image from a10 fps CSC (Dragonfly2). (b)
Two reconstructed frames. While the CSC captured an image frame
every100 ms, we obtain reconstructions with a temporal resolution
of 1 ms.

with a single pre-determined code. In contrast, in traditional
strobing prior knowledge of the period is necessary to strobe
at the appropriate frequency. Notice that the reconstructed
image of the tool rotating at3000 rpm is crisp and the images
blur progressively as the rpm increases. Since the temporal
resolution of Dragonfly2 strobe is0.5 ms, the features on the
tool begin to blur at speeds as fast as12000 rpm. In fact, the
linear velocity of the tool across the image plane is about33
pixels per ms (for12000 rpm), while the width of the tool
is about45 pixels. Therefore, the recovered tool is blurred to
about one-third its width in0.5 ms.

C. Toothbrush using Dragonfly2 camera

We use a Dragonfly2 camera operating in Trigger Mode 5 to
capture a coded sequence of the Crest toothbrush oscillating.
The camera operated at10 fps, but we reconstruct video of
the toothbrush at1000 fps (U = 100) as shown in Figure 16.
Even though the camera acquires a frame every 100 ms, the
reconstruction is at a temporal resolution of1 ms. If we assume
that there areL photons per ms, then each frame of the camera
would acquire around0.5 ∗ 100 ∗ L photons. In comparison,
each frame of a high-speed camera would accumulateL
photons, while traditional strobing camera would accumulate
L ∗ fP /fs = 6.3L photons per frame.

D. High-speed video of a jog
Using frames from a high-speed (250 fps) video of a person
jogging-in-place we simulate in computer the capture of the
scene using a normal camera and the CSC at upsampling
factors ofU = 25, 50 and75. The coded frames from CSC
are used to reconstruct back the original high-speed framesby
enforcingstructured sparsity. The results of the reconstruction
using frames from the CSC at different upsampling factors
are contrasted with frames captured using a normal camera in
Figure 17(a). At any given pixel, the signal is highly quasi-
periodic since it is not a mechanically driven motion but our
algorithm performs reasonably well in capturing the scene.In
Figure 17(b) we contrast the reconstruction at two different
pixels, one where the motion is fast and the other where it is
relatively slower. Note that the pixels corresponding to faster
motion have high frequency variations due to texture and are
harder to reconstruct.

VI.B ENEFITS AND L IMITATIONS

A. Benefits and advantages
Coded strobing allows three key advantages over traditional
strobing: (i) signal to noise ratio (SNR) improvements due
to light-efficiency, (ii) no necessity for prior knowledge of
dominant frequency, and (iii) the ability to capture scenes
with multiple periodic phenomena with different fundamental
frequencies.

Light throughput: Light efficiency plays an important role if
one cannot increase the brightness of external light sources.
Let us consider the linear noise model (scene indepen-
dent) where the SNR of the captured image is given by
LTExposure/σgray, where L is the average light intensity
at a pixel andσgray is a signal independent noise level
which includes effects of dark current, amplifier noise and
A/D converter noise. For both traditional and coded strobing
cameras, the duration of the shortest exposure time should at
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Fig. 17: Frontal scene of a person jogging-in-place. (a) A frame
captured by a normal camera and one of the frames recovered from
coded strobing capture atU = 25. (b) Plot in time of the pixel
(yellow) of the original signal and signal reconstructed from coded
strobing capture atU = 25, 50 and 75. Note that the low frequency
parts of the signal are recovered well compared to the high-frequency
spikes.

most betδ = 1/(2fMax). In traditional strobing, this short
exposuretδ is repeated once every period of the signal, and
therefore the total exposure time in every frame is given by
TStrobing = (1/2fMax)(fP /fs). Since the total exposure time
within a frame can be as large as50% of the total frame
duration for CSC,TCoded = 1/2fs. The decoding process in
coded strobing introduces additional noise, and this decoding
noise factor isd =

√

trace((ATA)−1)/M . Therefore, the
SNR gain of CSC as compared to traditional strobing is given
by

SNRGain =
SNRCoded

SNRStrobing

=
(LTCoded)/(dσ)

(LTStrobing)/(σ)
=

fMax

dfP
(9)

For example, in the case of the tool spinning at3000 rpm
(or 50 Hz), this gain is20 log(1000/(2 · 50)) = 20dB since
fMax = 1000 Hz for strobe rate2000 strobes/second. So
coded strobing is a great alternative for light-limited scenarios
such as medical inspection in laryngoscopy (where patient
tissue burn is a concern) and long range imaging.

Knowledge of fundamental frequency: Unlike traditional
strobing, coded strobing can determine signal frequency in
post-capture, software only process. This allows for interesting
applications such as simultaneous capture of multiple signals
with very different fundamental frequencies. Since the pro-
cessing is independent for each pixel, we can support scenes

with several independently periodic signals and capture them
without a-priori knowledge of the frequency bands as shown
in Figure 18(a). Shown, in Figure 15 are the reconstructions
obtained for the tool which was rotating at 3000,4500,6000
and 12000 rpm. In all these cases, the same coded shutter
sequence was used at capture-time. Also, the reconstruction
algorithm can also eminently handle both periodic and quasi-
periodic signals using the same framework.

Multiple periodic signals: Unlike traditional strobing, coded
strobing allows us to capture and recover scenes with multiple
periodic motions with different fundamental frequencies.The
capture in coded strobing doesn’t rely on frequency of the
periodic motion being observed and the recovery of the signal
at each pixel is independent of the other. This makes it possible
to capture a scene with periodic motions with different funda-
mental frequency all at the same time using the same hardware
settings. The different motions are reconstructed independently
by first estimating the respective fundamental frequenciesand
then reconstructing by enforcing structured sparsity.

We perform experiments on an animation with two periodic
motions with different fundamental frequencies. Shown in
Figure 18(a) are few frames of the animation with a rotating
globe on the left and a horse galloping on the right. The
animation was created using frames of a rotating globe which
repeats every24 frames and frames of the classic galloping
horse which repeats every15 frames. For simulation, we
assume that a new frame of the animation is being observed
at a resolution ofδt = 1 ms and we observe the animation
for a total time of4.8 seconds (N = 4800). This makes the
period of the globe24 ms (fP = 41.667 Hz) and that of
horse15 ms (fP = 66.667 Hz). The scene is captured using
a 25 fps (U = 40) camera and few of the captured CSC
frames are shown in (b). The reconstructed frames obtained
by enforcing structured sparsity are shown in (c). Prior to
the reconstruction of the scene at each pixel, fundamental
frequencies of the different motions were estimated. For one
pixel on horse (marked blue in Figure 18(a)) and one pixel
on the globe (marked red), the output SNR||y||/||y − ŷ|| is
shown as a function of hypothesized fundamental frequency
fH in Figure 18(d). The fundamental frequency are accurately
estimated as66.667 Hz for the horse and41.667 Hz for the
globe.

Ease of implementation:The previous benefits assume signif-
icance because modern cameras, such as PointGrey DragonFly
2, allow coded strobing exposure and hence there is no need
for expensive hardware modifications. We transform this off-
the-shelf camera instantly into a2000 fps high-speed camera
using our sampling scheme. On the other hand, traditional
strobing has been extremely popular and successful becauseof
its direct-view capability. Since our reconstruction algorithm
is not yet real-time, we can only provide a delayed viewing
of the signal. Table II lists the most important characteristics
of the various sampling methodologies presented.

B. Artifacts and limitations
We address the three most dominant artifacts in our re-
constructions: (a) Blur in the reconstructed images due to
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(a) Original frames (b) Coded strobing, U=40 (c) Reconstructed frames
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Fig. 18: Recovery of multiple periodic motion in a scene. (a) shows periodic events with different periods. The scene as capturedby CSC
is shown in (b). The recovered frames are shown in (c). Shown in (d) is the estimated fundamental frequency of globe and horse at points
marked red and blue. Note that the last peak in both globe and horse corresponds to the respective fundamental frequency of 41.667 Hz
and 66.667 Hz.

Method Sampling Rate Best Scenario Benefits Limitations
High-speed (Nyquist) 2 f0 Scene withinf0 Robust Costly
Strobing (band-pass) Lower thanf0 Periodic and Brightly lit Direct-view Linear search
Non-uniform Lower thanf0 Brightly lit No aliasing Not robust to noise
Coded Strobing Lower thanf0 Periodic Light-efficient No direct-view

TABLE II: Table showing relative benefits and appropriate sampling for presented methods.

time resolution, (b) temporal ringing introduced during de-
convolution process, and (c) saturation due to specularity.

Blur : As shown in Fig 19, we observe blur in the reconstructed
images when the higher spatio-temporal frequency of the
motion is not captured by the shortest exposure time of0.5
ms. Notice that the blur whenδt = 0.5 ms is less compared
to whenδt = 1 ms. The width of the tool is about45 pixels
and the linear velocity of the tool across the image plane is
33 pixels per millisecond. Hence, there is a blur of about16
pixels in the reconstructed image whenδt = 0.5 ms and33
pixels whenδt = 1 ms. Note that this blur is not a result of
the reconstruction process and is dependent on the smallest
temporal resolution. It must also be noted here that while
12000 rpm (corresponding to200 Hz) is significantly less
compared to the2000 Hz temporal resolution offered by coded
strobing, the blur is a result of visual texture on the tool.

Temporal ringing : Temporal ringing is introduced in the
reconstructed images during the reconstruction (deconvolu-
tion) process. For simplicity, we presented results without any
regularization in the reconstruction process (Figure 12(d),(e)).
Note that in our algorithm reconstruction is per pixel and the
ringing is over time. Figure 20(a) shows temporal ringing
at two spatially close pixels. Since the waveforms at these
two pixels are related (typically phase shifted), the temporal
ringing appears as spatial ringing in the reconstructed images
(Figure 16(b)). Either data independent Tikhonov regulariza-
tion or data dependent regularization (like priors) can be used
to improve the visual quality of the reconstructed videos.

Saturation: Saturation in the captured signaly results in sharp
edges which in turn leads to ringing artifacts in the recon-
structed signal. In Figure 20(b) we can see that the periodic

(a) 0.5 ms

(b) 1 ms

Fig. 19: Coded strobing reconstructions exhibit blur when the
temporal resolutionδt is not small enough. Shown in (a) and (b) are
the same mill tool rotating at 12000 rpm and captured by a strobe
with δt = 0.5 ms andδt = 1 ms respectively. The reconstructions
shown in the second and third column show thatδt = 1 ms strobe
rate is insufficient and leads to blur in the reconstructions.
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Fig. 20: (a) Ringing artifacts (in time) in the reconstructed signal
at two pixels separated by8 units in Fig 12(f). Also shown are the
input signals. Note that artifacts in reconstruction (in time) manifests
itself as artifacts in space in the reconstructed image. (b)Artifacts
in the reconstructed signal due to saturation in the observed signal
y.

signal recovered from saturatedy has temporal ringing. Since
reconstruction is independent for each pixel, the effect of
saturation is local and does not affect the rest of the pixelsin
the image. Typical cause of saturation in the captured imageis
due to specularities in the observed scene. Specularities (that
are not saturated) do not pose a problem and are reconstructed
as well as other regions.
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Fig. 21: The waveforms in a neighborhood are highly similar and
hence the information is redundant. Shown are the waveformsof 4
pixels at the corners of a3 × 3 neighborhood. The waveforms are
displaced vertically for better visualization.

VII.E XTENSIONS AND CONCLUSIONS

A. Spatial redundancy
In this paper, we discussed a method called coded strobing
that exploits the temporal redundancy of periodic signals and
in particular, their sparsity in the Fourier domain in orderto
capture high-speed periodic and quasi-periodic signals using
a low frame-rate CSC. The analysis and the reconstruction
algorithms presented considered the data at every pixel as
independent. In reality, adjacent pixels have temporal profiles
that are very similar. In particular (see Figure 21), the temporal
profiles of adjacent pixels are related to each other via a phase
shift which depends upon the local speed and direction of
motion of scene features. This redundancy is currently not
being exploited in our current framework. We are currently
exploring extensions of the CSC, that explicitly model this
relationship and use these constraints during the recovery
process.

B. Spatio-temporal resolution trade-off
The focus of this paper, was on the class of periodic and quasi-
periodic signals. One interesting and exciting avenue for future
work is to extend the application of the CSC to a wider class
of high-speed videos such as high-speed videos of statistically
regular dynamical events (e.g., waterfall, fluid dynamics etc)
and finally to arbitrary high-speed events such as bursting
balloons etc. One alternative we are pursuing in this regard
is considering a scenario which allows for spatio-temporal
resolution trade-offs, i.e., use a higher resolution CSC inorder
to reconstruct lower resolution high-speed videos of arbitrary
scenes. The spatio-temporal regularity and redundancy avail-
able in such videos needs to be efficiently exploited in order
to achieve this end.

C. Conclusions
In this paper, we present a simple, yet powerful sampling
scheme and reconstruction algorithm that turns a normal video
camera into a high-speed video camera for periodic signals.
We show that the current design has many benefits over
traditional approaches and show a working prototype that is
able to turn an off-the-shelf25 fps PointGrey Dragonfly2
camera into a2000 fps high-speed camera.
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