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Abstract

One prediction about this future of pervasive technology is that people will carry the tools needed
to interface with technological resources sprinkled through out the environment. A problem with
this vision is the dark side of the network effect: early adopters will end up carrying around
interfaces for technology that largely does not yet exist, and building managers will question
the value of installing technology with features that almost no one will be able to use. An
intermediate solution is that certain buildings with specific needs for efficiency or security (such
as hospitals) may become smart, with technology insinuated into particular spaces. Since many,
or even most of the people in these spaces will not have the technology to interface directly with
the new pervasive resources, we must think of the interaction idiom as initially being closer to the
notion of smart environments. These environments will have to sense, interpret, and facilitate the
actions of the inhabitants, possibly with very little help from technology attached to the people
involved, or even their cooperation. We survey a body of work on perceptual tools for smart
buildings, built on the sensor network model, and focused on the idea that statistical methods
and population dynamics can provide valuable information even in situations where detection of
individual instances of behavior may be difficult to detect. These are some of the tools which
will fuel the building optimization applications that will justify the efforts of early adopters to
build smart buildings studded with pervasive technology.
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Abstract

One prediction about the future of pervasive technology
is that people will carry the tools needed to interface with
technological resources sprinkled through out the environ-
ment. A problem with this vision is the dark side of the
network effect: early adopters will end up carrying around
interfaces for technology that largely does not yet exist, and
building managers will question the value of installing tech-
nology with features that almost no one will be able to use.
An intermediate solution is that certain buildings with spe-
cific needs for efficiency or security (such as hospitals) may
become smart, with technology insinuated into particular
spaces. Since many, or even most of the people in these
spaces will not have the technology to interface directly with
the new pervasive resources, we must think of the interac-
tion idiom as initially being closer to the notion of smart
environments. These environments will have to sense, inter-
pret, and facilitate the actions of the inhabitants, possibly
with very little help from technology attached to the people
involved, or even their cooperation. We survey a body of
work on perceptual tools for smart buildings, built on the
sensor network model, and focused on the idea that statisti-
cal methods and population dynamics can provide valuable
information even in situations where detection of individual
instances of behavior may be difficult to detect. These are
some of the tools which will fuel the building optimization
applications that will justify the efforts of early adopters to
build smart buildings studded with pervasive technology.

1. Introduction

The first smart buildings already exist. Air condition-
ing systems, automatic window shades, and lighting re-
spond automatically to solar load. Security systems anno-
tate surveillance video with access control and sales data.
Elevators account for patterns of demand to improve effi-
ciency. Oddly, these buildings are so far largely insensi-
tive to the fact that there are people in them. The people

are sensed indirectly at best, through card swipes, elevator
calls, or unexplained heat load.

The next generation of smart buildings will have radio
networks, not to support pervasive computing, but because
it is cheaper to reconfigure building services in software
than it is to bring in an electrician. They will have dense
arrays of environmental sensors not to implement smart en-
vironments, but because the sensors cost less than the en-
ergy they save by enabling fine-grained, efficient environ-
mental control. They will eventually have simple networks
of sensors capable of sensing humans and their actions, not
because we in the research community think they’re a good
idea, but because sensing humans will be the next logical
step in optimizing the productivity and efficiency of the
building... in short because they will pay for themselves.

One way to understand this prediction is to say that the
slow, logical, incremental progress in building technology
will asymptotically approach the vision of the ambient in-
telligence movement: a sensor-rich, computation-rich envi-
ronment that perceives the user, anticipates their needs, and
acts to meet those needs like a good butler, that is without
necessarily having to be told what to do [4].

The prevailing vision of Pervasive Computing is more
explicitly interactive. Weiser’s tabs, pads, and boards
provide the ability to directly query the environment [8].
Projects like the Personal Server [7] imply the ability even
to co-opt technology in the environment for personal use.
While the visions of the Pervasive Computing movement
is more expansive, it places a high threshold on the critical
mass required for the network effect to provide any positive
value. The Personal Server isn’t useful unless there are dis-
plays out there that will allow you to use them. Displays are
installed by businesses to convey targeted information and
for branding purposes. The display owners value those mes-
sages and are unlikely to allow them to be brushed aside un-
less it is very clear that doing so will lead to increased prof-
itability. It’s hard to see how that will happen until there is
a significant population of people walking around with Per-
sonal Servers who have demonstrated that they will, directly
or indirectly, pay for the privilege.
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We think there is a potential bridge between these phases
of pervasive technology deployment. The smart environ-
ments that are deployed primarily for the benefit of the
building owners and operators will likely generate informa-
tion that is also valuable to the people in those buildings.
The sensors and analytic tools will exist. The incremental
cost of enabling end-user applications within the organiza-
tion becomes vanishingly small. The data simply needs to
be made available on the organizations intranet.

It is likely that the information will move around the
building, at least in part, over wireless links. The path to
the user terminal, be it a cell phone or some other device,
will therefore already be in place. The incremental cost of
enabling end user services for anyone in the building will
eventually be simply a software patch.

Once the smart environment becomes sophisticated
enough, the value of the new applications will quickly out-
weigh these costs, and the environment will then engage the
network effect that will accelerate development.

The challenge is that the sensor infrastructure will be
tuned to the concerns of the building management, not the
applications that those first end-users might actually care
about. The sensors are likely to be as cheap as possible.
Elevators don’t care who you are, just where you’re going.
Air conditioners don’t care what color shirt you’re wearing,
only where you are in the room. Economic, technological,
and privacy considerations [5] will conspire to ensure that
the sensors are as simple as possible.

Conner, et al. suggest that simple sensors, considered
individually, might be enough to enable valuable applica-
tions [1]. However, it has become clear that a much richer
set of applications can be enabled by considering the net-
work of sensors as a whole, and leveraging the full spatio-
temporal structure inherent to the data.

In the next section we discuss a public dataset that con-
sists of one year of motion sensor data that we have re-
leased to facilitate work on this challenge. In Section 3
we present examples to illustrate some of the basic spatio-
temporal patterns. Finally in Section 4 we sample the liter-
ature on spatio-temporal pattern recognition using this data
set and consider the applications that might be enabled.

2. Public Data Set

At the Mitsubishi Electric Research Laboratory (MERL)
we have been collecting motion sensor data from a network
of over 200 sensors since March 2006. In 2007 we released
a public data set containing well over 30 million raw mo-
tion records, spanning a calendar year and two floors of
our research laboratory. We believe it presents a significant
challenge for behavior analysis, search, manipulation and
visualization. We have also prepared accompanying analyt-
ics such as partial tracks and behavior detections, as well as

Figure 1. Time along the horizontal axis, space along the vertical
axis, dots represent motion detections. Top: Normal activity in-
terrupted by an evacuation. Bottom: A week showing diurnal and
weekly patterns of activity.

map data and anonymous calendar data marking the pattern
of meetings, vacations and holidays.

This data is the residual trace from the people working
in the research laboratory. It contains interesting spatio-
temporal structure ranging all the way from the seconds of
individuals walking down hallways, the minutes in lobbies
chatting with colleagues, the hours of dozens of people at-
tending talks and meetings, the days and weeks that drive
the patterns of life, to the months and seasons with their
ebb and flow of visiting employees.

2.1. Raw Motion Data

Individual wireless sensors detect the movement of peo-
ple using passive infrared motion detectors. An individual
or small group walking past the sensor will generate a single
activation, recorded as an association between a sensor ID
and a timestamp. The sensors are placed densely in the hall-
ways and lobbies of MERL, spaced approximately two me-
ters apart. As people move through the network, a sequence
of sensor activations is recorded. It is this spatio-temporal
structure, more than the individual sensor activations, that
gives meaning to the data.

Even when people stand still under a sensor, their small
movements will cause the sensor to trigger repeatedly, giv-
ing the data a different, distinct spatio-temporal structure.

It is interesting to consider the details of individual
movements, such as in the top plot of a fire evacuation in
Figure 1 (normal activity is apparent both before the evacu-
ation and after the re-population). It is also fruitful to con-
sider the larger structures of populations over longer spans
of time, such as the bottom plot that illustrates the differ-
ences between day and nights (vertical bands) as well as the
difference between work days and weekends.



Figure 2. A sequence of motion activations (orange boxes)
grouped together by their spatio-temporal proximity to each other
and their isolation from other distracting.

2.2. Tracklets

When an individual moves through the space they cre-
ate a structured pattern of activations that link parts of the
space together in a meaningful way. Tracking is the process
of recovering this structure from the raw observations. In
Figure 2 we see a set of activations linked together into a
tracklet.

2.3. Tracklet Graphs

There is an inherent ambiguity in motion sensor data. A
one-bit motion sensor cannot identify individuals, or even
distinguish between individuals and small groups. It is
therefore impossible to track individuals through the space
without some degree of ambiguity. A tracklet is a small sec-
tion of a track that can be recovered unambiguously. This
dataset includes a forest of graphs that represents all the
known tracklets as well as the ambiguity relationships be-
tween them. All true tracks will be embedded in a graph,
but each graph may allow many valid interpretations. Fig-
ure 3 is a schematic of a simple tracklet graph.

2.4. Reach

It is possible to walk the tracklet graphs to discover the
possible pairings of track starts and ends, for example the
simple graph in Figure 3 implies: A ≺ Y , B ≺ Y , A ≺ Z,
and B ≺ Z. One possible use of this data is to estimate the
probability that a trip beginning in one location will end at
another location by accumulating evidence over a span of
time, such as a day or a week. Figure 4 is an illustration of
such an estimate.

Figure 3. Tracklet Graph: people start at the triangles and end at
the squares, passing through ambiguities along the way.

Figure 4. Dark lines indicate higher probability of a connection
between localities in the space, which are represented as positions
around the circle.

2.5. Symbolic Data

The dataset also includes a calibration file that associates
the sensor IDs to a map of the lab. This grounds the data to
the spatial context of the lab. Temporally, the data is placed
in context by data from several calendars. These records in-
dicate the times and locations of various meetings and gath-
erings, the dates of official holidays, and a record of the
number of people who were out of the office on given days.
Also included, is a daily almanac of the weather conditions
in Cambridge, Massachusetts where the lab is located.

2.6. Using the Data

We invite you to download the data and apply your an-
alytic, visualization, and interface tools. To request access,
please visit http://www.merl.com/wmd/. More de-
tails and a video are also available at that location.

Papers that utilize this dataset must reference the techni-
cal report describing the data [11].

3. Examples of Spatio-Temporal Structure
The sensors detect fast changes in the thermal back-

ground radiation over a small region (approximately a cone
2 meters in diameter on the floor). If there is continuous mo-
tion under a sensor (such as a large group of people walking
by), then the sensor will fire repeatedly, about once every
2 to 3 seconds. If people are standing or sitting under a
sensor the sensor will still activate, but less often. This is
due to people adjusting their stance, gesturing, or perform-
ing self-adjustment motions. Someone standing absolutely
still under a sensor could theoretically avoid triggering it,



but in reality it is very difficult to stand that still for very
long. Larger stationary groups will tend to have higher acti-
vation rates, since the inter-arrival time of gestures and ad-
justments goes down.

The workday on Friday, August 4th, 2006 is a good pe-
riod to find examples of many kinds of gross behaviors.
That is because SIGGRAPH was in Boston that week and
many people came to MERL on Friday for a demo open
house, so there are large groups of people walking around
the space and loitering in lobbies and hallways. This is in
addition to the more typical behavior we see in the space.

3.1. Moving Around the Lab

The first example in Figure 5 shows people moving
around the space. A very common activity in this data set is
a single person, or possibly a couple people walking side-
by-side, walking down a hallway. Several examples are
shown on the left of that figure. Dots represent motion, di-
agonal lines represent people moving through space, in this
case along corridors.

On the right side of the same figure it is possible to see a
small group moving from the lecture hall to the small con-
ference room. The trace is similar to the single-parson case,
but it appears wider because each sensor fires multiple times
as the group moves underneath.

3.2. A Small Meeting

There is a meeting in the conference room on and off
all day on the 4th. The meeting is apparent in Figure 6 as
a dotted horizontal line near the top of the figure. Even
when people are sitting down and are subjectively still, the
sensor will still occasionally register motion due to com-
municative gestures, shifts in posture, or self-adjustments.
The inter-activation times during this session of the meet-
ing range from a couple seconds to a couple dozen seconds.

3.3. Large Groups

The final set of examples in Figure 7 show the signature
of large groups, which are fairly rare at MERL. Near the
top left of that figure is another session of the same small
meeting in the conference room. Compare that trace to the
the large group demonstrations in the lunch room and the
main reception lobby (indicated on the right top quadrant of
the figure).

This group arrives at the lobby from another area while
traversing the sequence of sensors highlighted by horizontal
stripes on the figure, and indicated on the lower right quad-
rant of the figure. This group was comprised of a dozen
people. Notice that the movement trace is very wide, with
each sensor firing a half dozen times during the passing of
the group.

4. Models

The work of Conner et al. at Intel calls for sensor acti-
vations to be uses in isolation, for example to determine if a
particular room is occupied [1]. Here we explore the more
powerful space-time models: naive spatio-temporal models,
building-structured models, and trip-structured models.

4.1. Naive Spatio-Temporal Models

The naive approach attempts to build statistical models
of the spatio-temporal structure in the data without the ben-
efit of any prior knowledge about the structure of buildings
or the nature of human activity.

These techniques are particularly valuable for systems
that need to be self-calibrating or adaptive without human
intervention. For example, it is possible for a system to au-
tonomously learn models of short-term pattern of behavior
in a space and uses those models to control a robotic cam-
era. We have shown that this method outperforms a human
operator [9].

Spatio-temporal structure can be used to predict demand
for resources and enable energy- or time-saving optimiza-
tions in a variety of application domains [12].

4.2. Building-Structured Models

By inserting a bit of knowledge into the system about
how buildings are put together, and how those architectural
idioms are used by people, it is possible to enable more
powerful inferences. For example the system can infer the
location of various resources, such as meeting rooms, by de-
tecting certain basic activities and their relationship in space
and time to semantic information outside the network, such
as events on the computer network, or the access control
network.

This system works even when individual activity detec-
tors perform poorly. This is important because the simple
sensors we can expect are often going to be noisy and am-
biguous in ways that make high-performance activity detec-
tion impossible. Fortunately high-value activities tend to be
frequently repeated: e.g. visiting a shared resource such as
a kitchen. A repeated activity will contribute a little infor-
mation each time it is repeated. The system can look for the
activity indirectly, by accumulating statistical evidence of
the repeated structure over time. This works reliably even
when the probability of detecting individual instances of the
activity is quite low.

This type of model is good at detecting building-centered
resources, such as places where people perform specific ac-
tivities, independent of the individuals involved. For exam-
ple, a user who wanted to know where the closest printer
is could cross reference activity data with electronic logs
of printing jobs to find out, even if the sensors were not



Figure 5. Dots are individual movements. Space on the vertical axis and time on the horizontal axis.

Figure 6. A horizontal line at one point in space, across time, is caused by a meeting in a conference room.

originally installed for that task and the system was never
explicitly configured with that information [13].

4.3. Trip-Structured Models

For some applications it is advantageous to use models
that focus on the people moving through the space, even
though the sensor network may not be capable of unam-
biguously differentiating between individuals. The tracklet
representation from Section 2.2 is an example of a data rep-
resentation that supports trip-structured models. The basic
unit of the representation is an unambiguous segment of a
trip through the building. The tracklet graph is then a mech-
anism for combining the segments of an ambiguous situa-
tion into explanations such as “the person who left location
A maybe have gone to location B at time TB or location C
and time TC , but nowhere else”.

These explanations are applicable to the security task
since they allow pruning of the visual search that is required
to find people who move between the gaps between camera
views in a classical surveillance system. Knowing exactly

where and when to look makes that search vastly more effi-
cient [3].

The real power in this method, parallel to the case of
the building-centered models, is when ambiguities can be
statistically resolved by considering the accumulated evi-
dence for structure in the data over many days, weeks, or
even months. Sunshine-Hill, et al. show that it is possible
to mine the tracklets graphs to synthesize plausible move-
ments of individuals [6]. This could be used to gauge the
typicality of observed movements, or to generate a set of
most common paths in support of navigation applications.

Connolly, et al. showed that this representation is useful
for extracting the social structure of a space by computing
probabilities of trip beginnings and endings from the track-
let graph database and assuming that individuals have of-
fices at particular fixed locations in the building [2]. It has
also been shown that this technique can be used to detect
changes in the social network structure even at the scale of
a single day [10].



Figure 7. Large groups cause a distinctive pattern of activity.

5. Summary

People generate structures in space-time when they go
about their activities in a building. These structures can be
detected even by networks of the simplest sensors. With
the appropriate perceptual tools these structures can be in-
terpreted, revealing subtle and useful information about the
activities in the building. It has been shown that it is possi-
ble to extract models of social interaction not only without
tags, but also when it is not possible to track individuals
unambiguously or even to differentiate one individual from
another other than by their gross behavior. Developing these
perceptual tools raises the probability that such networks
will be deployed in buildings, seeding the world with pow-
erful technology. These tools simultaneously enable high-
value applications using only those initial, pragmatic sensor
networks. Together these effects could help lower the cost
of initiating the network effect for pervasive computing.
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