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Abstract

Secure storage of biometric templates is extremely important because a compromised biometric
cannot be revoked and replaced an unlimited number of times. In many approaches proposed for
secure biometric storage, an error correcting code (ECC) is applied to the enrollment biometric
and the resulting parity or syndrome symbols are stored on the access control device, instead of
the original biometric. The principal challenge here is that most standard ECCs are designed
for memoryless channel statistics, whereas the variations between enrollment and probe biomet-
rics have significant spatial correlation. To address this challenge, we propose to transform the
original biometric into a feature vector that is explicitly matched to standard ECCs, thereby im-
proving the security-robustness tradeoff of the overall biometric system. As a concrete example,
we transform fingerprint minutiae maps into feature vectors compatible with ECCs designed for
a binary symmetric channel. We conduct a statistical analysis of these feature vectors and show
how our feature transformation algorithm may be combined with Low-Density Parity Check
(LDPC) codes to obtain a secure fingerprint biometric system.
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Abstract

Secure storage of biometric templates is extremely im-
portant because a compromised biometric cannot be re-
voked and replaced an unlimited number of times. In many
approaches proposed for secure biometric storage, an er-
ror correcting code (ECC) is applied to the enrollment bio-
metric and the resulting parity or syndrome symbols are
stored on the access control device, instead of the original
biometric. The principal challenge here is that most stan-
dard ECCs are designed for memoryless channel statistics,
whereas the variations between enrollment and probe bio-
metrics have significant spatial correlation. To address this
challenge, we propose to transform the original biometric
into a feature vector that is explicitly matched to standard
ECCs, thereby improving the security-robustness tradeoff
of the overall biometric system. As a concrete example,
we transform fingerprint minutiae maps into feature vec-
tors compatible with ECCs designed for a binary symmetric
channel. We conduct a statistical analysis of these feature
vectors and show how our feature transformation algorithm
may be combined with Low-Density Parity Check (LDPC)
codes to obtain a secure fingerprint biometric system.

1. Introduction

Computer-verifiable biometrics have emerged as an at-
tractive alternative to traditional passwords and identifying
documents. Their advantages include the fact that unlike
passwords, they cannot be forgotten and unlike identifying
documents, they are difficult to forge. One of the biggest
challenges to the wide applicability of biometric systems is
secure storage of biometric templates. This is because of
privacy concerns as well as the fact that, unlike passwords
or credit card numbers, personal biometrics cannot be re-
newed arbitrarily, since there is a limited number of fingers,
eyes, faces, or postures available. Securely storing a bio-
metric would greatly alleviate the privacy concerns of the

public regarding biometrics. However, while passwords or
ID numbers can be securely stored via a cryptographic hash,
this solution is not immediately applicable to biometrics.
This is because of the noisy nature of personal biometrics.
Every time a biometric is measured, the observation differs
slightly. For example, a fingerprint reading might change
because of elastic deformations in the skin when placed on
the sensor surface, dust or oil between finger and sensor,
or a cut to the finger. Biometric authentication systems
must be robust to such variations, which are not encoun-
tered in traditional password-based authentication systems .
Currently, most biometric authentication systems solve this
problem using pattern recognition. To perform recognition,
the enrollment biometric is stored on the device for compar-
ison with the probe biometric. This creates a security hole:
An attacker who gains access to the device also gains access
to the biometric template. This is clearly a serious problem,
made worse by the fact that an individual cannot generate
new biometrics if the system is compromised.

To prevent access to the original biometric, a set of fea-
tures extracted from the enrollment biometric sample may
be stored at the device, instead of storing the biometric sam-
ple itself. Authentication then involves a comparison be-
tween the features extracted from the enrollment and probe
biometrics. Notable among such approaches are cancelable
biometrics [1, 2], score matching-based approaches [3] and
threshold-based biohashing [4]. In general, given only the
extracted features, it is very difficult for an attacker to re-
cover the original biometric. However, it is difficult to rig-
orously prove that the system is secure when the feature
extraction algorithm itself is compromised.

Recently, error correction coding has been proposed to
deal with the joint problem of providing security against
attackers while accounting for the inevitable variability of
biometrics. The cryptographic primitive known as “secure
sketch” proposed in [5] can also be viewed as theoretically
equivalent to error correction coding. On the one hand, the
error correction capability of a channel code can accommo-
date the slight variation between multiple measurements of
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the same biometric [6, 7]. On the other hand, the check
bits of the error correction code can perform much the same
function as a cryptographic hash of a password on conven-
tional access control systems. Just as a hacker cannot invert
the hash and steal the password, he cannot use just the check
bits to recover and steal the biometric. However, it has been
found that schemes based on this principle [8, 9, 10] yield
high false reject rates. One reason for this is that the statisti-
cal relationship between the enrollment biometric and probe
is not accurately captured by the simple noise models as-
sumed in the theoretical works [6, 7]. In this paper, we pro-
pose to transform fingerprint biometrics into binary feature
vectors which are i.i.d. Bernoulli(0.5), independent across
different users but different measurements of the same user
are related by a binary symmetric channel with crossover
probability p (BSC-p) where p is small. The advantage of
this approach is that the BSC-p is a standard channel model
for many error correcting codes. Techniques for construc-
tion, encoding and decoding of such codes are already well-
understood and deeply explored. Thus, the emphasis of this
paper is on the design of feature vectors which have useful
statistics for secure pattern matching based on error correct-
ing codes.

This paper is organized as follows. In Section 2, we enu-
merate the statistical properties that feature vectors should
possess in order to be compatible with an error correcting
code designed for binary symmetric channels. In Section 3,
we describe two variants of a feature transformation algo-
rithm which transforms fingerprint biometrics into feature
vectors having these desired properties. In Section 4, we use
this algorithm to extract feature vectors from a fingerprint
database and evaluate them for security and robustness. In
Section 5, we show how a practical secure biometric sys-
tem is built by applying Low-Density Parity Check (LDPC)
coding to the feature vectors.

2. Desired Properties of Feature Vectors

As noted in the introduction, our objective is to gener-
ate feature vectors explicitly matched with error correcting
codes for binary symmetric channels (BSC). At the same
time, we desire that the feature vectors must be secure in
the sense that they should leak minimum information about
the original biometric. To satisfy the above constraints, the
feature vectors must have the following properties:

1. A bitin a feature vector representation is equally likely
tobeaOoral.

2. Different bits in a given feature vector are independent
of each other, so that a given bit provides an attacker
with no information about any other bit.

3. Feature vectors A and B from different fingers are in-
dependent of each other, so that one person’s feature

vector provides no information about another person’s
feature vector.

4. Feature vectors A and A’ obtained from different
readings of the same finger are statistically related by
a BSC-p. If p is small, it means that the feature vec-
tors are robust to repeated noisy measurements with
the same finger. Then, using syndromes from an er-
ror correcting code with an appropriate rate, it is pos-
sible to estimate the enrollment biometric when pro-
vided with probe feature vectors from the enrollee.

3. Feature Transformation Algorithm
3.1. Motivation

To transform a minutiae map into a /N-bit feature vector,
it suffices to ask N “questions,” each with a binary answer.
A general framework to accomplish this is shown in Fig. 1.
N operations are performed on the biometric to yield a non-
binary feature representation which can then be converted to
binary by thresholding. As an example, one can project the
minutiae map onto /N orthogonal basis vectors and quantize
the positive projections to 1’s and negative projections to
0’s [4].

In a recent study [11], minutiae maps are transformed
into integer-valued feature vectors by determining the dif-
ference in the number of minutiae points on either side of a
number of randomly generated lines. Application of Prin-
cipal Component Analysis (PCA) followed by a threshold-
ing operation results in a binary output vector. A related
scheme, albeit for face biometrics, is described in [12], in
which a bank of Gabor filters is used to transform the face
images into real-valued feature vectors. For a given enrolled
face image, those vector components that are far away from
their global means are deemed as reliable components in
the sense that, if these components are binarized with the
mean as a threshold, they will retain their binary value over
multiple measurements of the face biometric.

3.2. General framework for binarization

Inspired by the above approaches, we propose a method
to generate binary feature vectors from minutiae maps. In-
stead of using random lines as in [11], we consider ran-
dom closed 3D regions (cuboids). The reasons behind using
cuboids are (a) Bits can be extracted not only from the (x, y)
locations of the minutiae points but also from their orienta-
tions 6 (b) Since cuboids are closed regions, it is intuitively
easier to see that overlapping cuboids would produce corre-
lated bits.

We define an “operation” as counting the number of
minutiae points that fall in a randomly chosen cuboid in
X —Y — O space, as shown in Fig. 2. To chose a cuboid,
an origin is selected uniformly at random in X — Y — ©



Original Integer Binary
Biometric Vector Vector
Template
—| Operation 1 5 — — 0
>
— Q. L
7 )
7 =3
K X Operation 2 12 — %‘ — 1
y — = ]
b, >
@
o~ 2]
e >
=3
a
g
— Operation N 7 — — 0

Figure 1. N questions can be asked by performing N operations
on the biometric followed by thresholding. In our scheme, the op-
eration involves counting the minutiae points in a randomly gen-
erated cuboid.
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Figure 2. To obtain a binary feature vector, the number of minu-
tiae points in a cuboid is thresholded w.r.t the median number of
minutiae points in that cuboid calculated over the entire dataset.
Overlapping cuboid pairs will result in correlated bit pairs.

space, and the dimensions along the three axes are also cho-
sen at random. Next, we define the threshold as the median
of the number of minutiae points in the chosen cuboid, mea-
sured across the complete training set. The threshold value
may differ for each cuboid based on its position and vol-
ume. If the number of minutiae points in a randomly gener-
ated cuboid exceeds the threshold, then a 1-bit is appended
to the feature vector, otherwise a 0-bit is appended. We con-
sider the combined operation of (a) generating a cuboid and
(b) thresholding as equivalent to posing a question with a
binary answer. N such questions result in an /N-bit feature
vector.

A straightforward way to generate feature vectors is to
use the same questions, i.e., the same set of cuboids, for all
enrolled users. It is not difficult to see that the amount of
overlap between the cuboids affects the pairwise bit corre-
lations in the resulting binary representation. We define the

_ Vin,
overlap measure as O, ; = TATER where Vi ; and Vi ;
are the volumes of the intersection and union of cuboids ¢
and j.

Fig. 3(a) shows the relation between pairwise entropy
of the binary feature vectors and the overlap between the
corresponding pairs of cuboids used. Overlapping cuboids
generate bit-pairs with high correlation, i.e., low pairwise
entropy. To improve the pairwise entropy profile, we first
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Figure 3. (a) Overlapping cubes generate bit pairs with high corre-
lation (low pairwise entropy), simplifying the task of the attacker.
(b) While choosing a subset of questions, pairs with lowest pair-
wise entropy are discarded.

locate the pair of cuboids with the lowest pairwise en-
tropy. From this pair, we eliminate the cuboid which has
lower pairwise entropy when paired with all the remaining
cuboids. Fig. 3(b) shows the relation between the overlap
between cuboids and the pairwise bit entropies after 250
out of 400 cuboids are eliminated as described above. Af-
ter the elimination, pairwise independence of the bit pairs
in the feature vectors is improved.

3.3. User-Specific Cuboids

We now consider a second approach in which the ques-
tions are user-specific. The rationale behind using user-
specific questions is that some questions are more robust
(reliable) than others. In particular, a question is robust if
the number of minutiae points in a cuboid is far removed
from the median calculated over the entire dataset. Thus,
even if there is spurious insertion or deletion of minutiae
points when a noisy measurement of the same fingerprint is
provided at a later time, the answer to the question (0 or 1)
is less likely to change. On the other hand, if the number of
minutiae points is close to the median, the O or 1 answer to
that question is less reliable. Thus, more reliable questions
result in a BSC-p intra-user channel with low p. Different
users have a different set of robust questions, and we pro-
pose to use these while constructing the feature vector.

The above process of selecting reliable cuboids based
on the difference between the number of minutiae points
in that cuboid and the median number of minutiae points is
similar to the method followed in [12]. However, this pro-
cess alone is not sufficient to generate binary feature vectors
with the properties listed in Section 2. For example, there
is no guarantee that thresholding the number of minutaie
points in the randomly chosen reliable cuboids would re-
sult in an approximately equal number of 0-bits and 1-bits.
Therefore, we propose a probabilistic method to select the
reliable questions. For a given user ¢, the average num-
ber of minutiae points 7m; ; in a given cuboid C; is calcu-
lated over repeated noisy measurements of the same finger-
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Figure 4. Statistical properties of feature vectors when the number of questions is N=150. (a,d) There is greater separation between the
intra-user and inter-user distributions with user-specific questions than with common questions. (b,e) The equal error rate (EER) is 0.05
with common questions and 0.027 with user-specific questions. (c,f) The histogram of the number of ones in the feature vectors is clustered
more closely around N/2 = 75 for the user-specific questions case compared to the common questions case.

print. Let m; and o; be the median and standard deviation
of the number of minutiae points in C; over the dataset of
all users. Then, let A; ; = (m; ; — m;)/o;. The magni-
tude, |A, ;| is directly proportional to the robustness of the
question posed by cuboid C; for user . The sign of A; ; de-
termines whether the cuboid C; should be placed into £ ;,
a list of questions with a 0 answer for user ¢, or into £ ;, a
list of questions with a 1 answer for user ¢. Both these lists
are sorted in the decreasing order of |A; ;|. Now, a fair coin
is flipped to choose between L ; and £, ; and the question
at the top of the chosen list is stored on the device. After [V
coin flips, approximately N/2 of the most robust questions
from each list will be stored on the device. This process is
repeated for each enrolled user .

4. Experiments and Results
4.1. Data Set

In our experiments, we use a proprietary fingerprint
database which contains minutiae maps of 1035 fingers with
15 fingerprint samples taken from each finger. The minutiae
maps are 240 x 320 pixels, with an orientation 0 < 6 < 27
associated with each minutiae point. The average number
of minutiae points in a single map is approximately 32. All
fingerprints are pre-aligned with respect to a core point and
the minutiae locations and orientations have been recalcu-

lated accordingly. Normalized Hamming Distance (NHD)
is used to quantify the dissimilarity of two binary feature
vectors.

4.2. Statistical Analysis

To measure the extent to which the desired statistical
properties in Section 2 are achieved, we examine the fea-
ture vectors obtained from the minutiae maps according to
the method described in Section 3. The /N most robust ques-
tions were selected to generate the feature vectors, with N
ranging from 50 to 350. The statistical properties of the
feature vectors constructed from N=150 cuboids is shown
in Fig. 4(a,b,c) for common questions and Fig. 4(d,e,f) for
user-specific questions.

Fig 4(a) has only two histograms for the intra-user and
inter-user variation while Fig 4(d) has a third histogram for
the attacker variation. Note that, for the case of user-specific
questions, the attacker variation becomes relevant if the at-
tacker gains access to the victim’s questions. The inter-user
variation is relevant if the attacker has not broken into the
system and has not accessed the victim’s questions, but is
merely trying to pose as the victim without knowing his
specific questions. In a practical biometric system, the ques-
tions would not be publicized. So, most attackers will not
have access to them and therefore, in most cases, the inter-
user variation will be relevant instead of the more conserva-
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tive attacker variation.

To better evaluate the inter-user and intra-user separa-
tion from the histograms in Fig. 4(a,d) we plot the inter-user
NHD (or attacker NHD for user-specific questions) against
the intra-user NHD as shown in Fig. 4(b,e). The point at
which these quantities are equal is defined as the Equal Er-
ror Rate (EER) for the feature vectors. User-specific ques-
tions yield a lower EER which indicates a superior security-
robustness tradeoff. Fig. 5 plots the EER for various values
of N. Observe that user-specific questions provide a sig-
nificantly lower EER than using the same questions for all
users. Even if the attacker is provided with the user-specific
questions, the resulting EER is lower than the case in which
everybody has the same questions.

5. A Secure Fingerprint Biometrics System

For a practical implementation in which a human bio-
metric template is transformed into a feature vector com-
patible with a suitable error correcting code, consider the
secure fingerprint biometrics system shown in Fig. 6. Dur-
ing enrollment, the user provides a fingerprint from which
the system first determines a minutiae map M.Next, the
feature transformation algorithm from Section 3 maps the
minutiae array into a binary feature vector A of fixed preset
length N. Then, a syndrome encoder maps the binary fea-
ture vector into a syndrome S, which serves as the secure
biometric. In the proposed scheme, syndrome encoding is
performed with the graph of an LDPC code C. The access
control system stores S, C and a cryptographic hash of the
binary feature vector fhasn(A). It does not store M or A or
the image of the original fingerprint.

During authentication, a user or attacker requests access
by providing a probe fingerprint from which the authentica-
tor obtains a minutiae map L. Next, it transforms L into a
probe feature vector B. Now, the LDPC decoder assumes

N BSC R ppc | No.of |FRR after | FAR after

crossover Bits of | syndrome | syndrome
probability Security | coding coding
P
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Figure 7. Feature vectors obtained from user-specific cuboids pro-
vide a better security-robustness tradeoff, when combined with
syndrome coding than feature vectors obtained from common
cuboids.

that the probe feature vector B is an error prone version
of the enrollment feature vector A. It combines the secure
biometric S (syndrome) and the probe feature vector B and
performs belief propagation decoding. The result of belief
propagation is either an estimate A of enrollment feature
vector a, or a special symbol 0 indicating decoder failure.
Now, it is possible that A # A, yet A satisfies the syn-
drome S. To protect against this possibility, and more im-
portantly to protect against an attacker using a stolen set
of syndromes to construct his own estimate A which satis-
fies the syndromes but is not the true biometric, access is
granted if and only if fhan(A) = frasn(A).

The overall tradeoff between robustness, as measured by
the False Reject Rate (FRR) and security, as measured by
the False Accept Rate (FAR) is shown in Fig. 7 for feature
transformation carried out both with common cuboids and
user-specific cuboids. We observe that user-specific cuboids
provide a better performance both in terms of the FRR-FAR
tradeoff as well as in terms of the number of bits of security.
The number of bits of security is calculated as N Ry ppc. In
particular, the best overall performance is obtained for the
case of 150 user-specific cuboids. We emphasize that for
the purposes of security analysis, the set of questions used
in the system is assumed public. An attacker who steals a
set of syndromes and poses falsely as a user will be given
the set of questions appropriate to that user. Security is not
based on the obscurity of the questions, but rather on the
information-theoretic difficulty of recovering the biometric
given only the stolen syndromes.

6. Conclusions and Outlook

The broad objective of this paper is to propose and illus-
trate that human biometric templates can be transformed so
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Figure 6. Robust feature extraction is combined with syndrome coding to build a secure fingerprint biometrics system.

as to possess a statistical profile that is compatible with the
tools used to perform secure pattern recognition. We de-
scribed an algorithm that transforms minutiae-based finger-
print templates into binary feature vectors whose properties
are matched with error correcting codes designed for stan-
dard channel models. These feature vectors account for the
location and orientation of the minutiae points and are ro-
bust to the variation in minutiae maps derived from repeated
noisy measurements from the same finger. We showed a
practical implementation of a secure biometric storage sys-
tem in which syndromes obtained via LDPC coding of these
feature vectors serve as secure biometrics. In this way,
fingerprint-based access control is implemented without the
need to store the original fingerprint template at the device.

The focus of our ongoing work is on improving the
security-robustness tradeoff in fingerprint biometrics by (a)
developing efficient methods to eliminate correlated ques-
tion pairs for the user-specific feature transformation and
(b) incorporating other modalities such as fingerprint ridge
maps into the feature transformation.
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