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Abstract

We consider the problem of finding shortest paths in a graph with independent randomly dis-
tributed edge lengths. Our goal is to maximize the probability that the path length does not
exceed a given threshold value (deadline). We give a surprising exact n theta (log n) algorithm
for the case of normally distributed edge lengths, which is based on quasi-convex maximization.
We then prove average and smoothed polynomial bounds for this algorithm, which also trans-
late to average and smoothed bounds for the parametric shortest path problem, and extend to
a more general non-convex optimization setting. We also consider a number other edge length
distributions, giving a range of exact and approximation schemes.
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Abstract. We consider the problem of finding shortest paths in a graph with in-
dependent randomly distributed edge lengths. Our goal is to maximize the proba-
bility that the path length does not exceed a given threshold value (deadline). We
give a surprising exact nΘ(log n) algorithm for the case of normally distributed
edge lengths, which is based on quasi-convex maximization. We then prove av-
erage and smoothed polynomial bounds for this algorithm, which also translate
to average and smoothed bounds for the parametric shortest path problem, and
extend to a more general non-convex optimization setting. We also consider a
number other edge length distributions, giving a range of exact and approxima-
tion schemes.

1 Introduction

Finding shortest paths between a given source and destination is a classic and funda-
mental problem in theoretical computer science which has influenced a wide array of
other fields. It is less clear what a stochastic shortest path would mean, when the edge
lengths are random with given distributions. Is it the shortest path on average, or the
path minimizing a combination of mean and variance, or minimizing some other cri-
terion? Is it found adaptively or non-adaptively? A variety of problem variants have
appeared in the literature, most minimizing the expected length of a path, or a com-
bination of expected length and expected cost such as bicriterion problems [15], [19].
Adaptive formulations have prevailed, perhaps because a non-adaptive minimization of
the expected path length trivially reduces to the deterministic shortest path problem.

Few researchers have considered optimizing a non-linear function of the (random)
path length. Some notable work includes that of Loui [12] who seeks the path maxi-
mizing an expected utility of the path length for a class of monotone decreasing utility
functions. Fan et al. [6] present an adaptive heuristic for paths that maximize the prob-
ability of arriving on time. Formulations of this type with nonlinear objective, though
perhaps most useful in practice, have been sparse, because different sources of hard-
ness arise from many levels: combinatorial, distributional, analytic, functional, to list a
few. For example, in the absence of randomness, the combinatorial nature of the prob-
lem may be hard to approximate for certain objective functions (e.g., longest path [9]).
In the absence of graph structure, the objective function in itself may be difficult to
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optimize: we can solve efficiently linear programming but not even quadratic or more
generally non-convex programming. The distributions may be hard to work with: calcu-
lating values of the cumulative distribution function of the sum of n Bernoulli random
variables is #P-hard as it corresponds to counting knapsack solutions [11]. Computing
the expectation E[u(X)] =

∫

u(x)f(x)dx of the non-linear utility function u(.) of
the random path length X with probability density function f(.) may not even have a
closed form, thus making the standard notion of computational hardness inapplicable.
Superimposing these sources of difficulty may ultimately lead to a problem that has no
hope of even being categorized as to what level of hardness it has—partly because we
do not understand to what extent each source contributes to the overall complexity.

We thus focus on a stochastic shortest paths model which can effectively factor the
sources of difficulty above and at the same time has an innovative solution drawing from
a variety of areas. Inspired by recent formulations of the stochastic knapsack and other
classic problems turned stochastic [5], [7] our goal is to maximize the probability that
the path length would not exceed some threshold value. This is a natural formulation
which is also very practical: For example, this is our objective when we are going to
the airport and want to pick the path that would maximize our probability of arriving on
time for our flight. We consider a pre-planning (nonadaptive) scenario and note that it
can easily be converted to an adaptive one by rerunning our algorithms on the fly with
updated information.

Apart from the inherent practicality of the problem, it reveals a deeper theoretic
structure intertwining areas such as nonconvex programming, the geometry of path
polytopes and combinatorial optimization. As a preview to some of the open ques-
tions, we give an exact nΘ(log n) algorithm for our main model with edge lengths drawn
from normal distributions. It is unknown whether a polynomial exact algorithm exists or
whether this problem is complete for the corresponding complexity class LogNP [21].
Our algorithm also reveals a somewhat unexpected connection between Kelner & Spiel-
man’s recent techniques for linear programming [10] and the much more general field
of nonconvex optimization. We extend their techniques to get polynomial-time aver-
age and smoothed complexity for our superpolynomial algorithms. We stress that these
smoothed results are stronger than previous smoothed results in that they do not perturb
the feasible set (the path polytope), but just the objective function (the plane on which
the polytope is projected). Or, in the terms of the stochastic shortest paths terminology,
only the edge means and variances and not the solution paths themselves, are slightly
perturbed. As an added benefit, we reveal a connection between the stochastic and para-
metric shortest path problems, which implies new average and smoothed results for the
parametric shortest path problem as well. Our results can also generalize to a wide class
of non-convex optimization problems, known as low-rank quasiconcave minimization
[18].

1.1 Our Results

We define a model for the stochastic shortest path problem in which the edge lengths are
independent random variables drawn from known distributions. The optimal path max-
imizes the probability that the path length does not exceed a given threshold (deadline).



This objective arises naturally in practice where a user wants to maximize the probabil-
ity of arriving on time to a destination. In an effort to decouple the complexity inherent
in this objective from the distributional and analytic complexity of the problem, our
first model draws the edges from normal distributions. We show that for a large range
of deadlines our problem entails the maximization of a quasi-convex function over the
path polytope. Due to the particular form of our quasi-convex objective, the optimal
path is attained at an extreme point of the dominant of the projection (shadow) of the
path polytope onto a two-dimensional plane. We thus give an exact algorithm for find-
ing the optimal path by walking along extreme points of the shadow dominant. We then
establish an equivalence between the shadow dominant and the optimal cost envelope
of the parametric shortest path problem. Consequently, this proves that our algorithm
has a worst case running time nΘ(log n). We give a pseudopolynomial algorithm for the
remaining range of deadlines.

In the following section we extend the techniques from Kelner & Spielman [10] to
prove linear average and smoothed complexity of the shadow of the path polytope and
consequently polynomial running time of our algorithm. These results also imply new
polynomial average and smoothed bounds on the complexity of the parametric shortest
path problem and hold for a wider class of non-convex optimization problems than the
specific stochastic shortest path objective.

Finally we extend our model to distributions other than the normal. For edge lengths
coming from a Poisson or a gamma distribution with a fixed second parameter, or more
generally distributions which are additive and satisfy stochastic dominance, we show
that the problem easily reduces to the deterministic shortest path problem. For the case
of exponential and Bernoulli random variables, we give polynomial (PTAS) and quasi-
polynomial (QPTAS) approximation schemes respectively based on a discretization of
the state space of the random edge lengths.

1.2 Related Work

The majority of the related literature on stochastic shortest paths focuses on adaptive
algorithms, which compute the next best hop based on information about realized edge
lengths so far [2], [22], [3], [20], [6], [13]. Most of the adaptive formulations focus on
minimizing expected path length; few consider minimizing a non-linear function of the
length and settle for heuristic algorithms [6].

The most closely related nonadaptive formulation to our model is that of Loui [12].
Loui considers a general utility function of path length which is monotone and nonde-
creasing, and proves that the expected utility becomes separable into the edge lengths
only when the utility function is linear or exponential. In that case the path that maxi-
mizes expected utility can be found via traditional shortest path algorithms. For general
utility functions he gives an algorithm based on an enumeration of paths, with a very
large running time O(nn). In a consequent paper, Mirchandani and Soroush give expo-
nential algorithms and heuristics for quadratic utility functions [14]. For non-monotone
utility functions Nikolova, Brand and Karger [17] give hardness results and pseudopoly-
nomial algorithms. For a separate model on bicriteria shortest paths with monotone
objective, Ackerman et al. [1] give different average and smoothed analyses.



2 Problem definitions and quasi-convex maximization

2.1 Stochastic Shortest Path definition

Consider a graph G = (V, E), with |V | = n nodes and |E| = m edges. We are given
a source S and destination T . Each edge i has an independent random variable length
(travel time) Xi. We have a deadline in time t, and we would like to find an ST -path
which maximizes the probability that we reach the destination within time t. Thus, we
would like to solve

max
π

Pr
(

∑

i∈π

Xi ≤ t
)

for paths π between the source and destination. (1)

In the following sections, we see that different distributional assumptions for the edge
lengths lead to problem complexity and algorithms of very different nature.

2.2 Parametric Shortest Path definition

Consider a graph G with distinguished source S and destination T . Each edge i has a
parameter dependent length ui + λwi, where ui, wi are nonnegative constants. and
λ ∈ [0,∞). The parametric shortest paths problem looks for the parameter values
(breakpoints) λ ∈ (0,∞) at which the shortest path changes. Carstensen [4] proved
that the number of breakpoints is at least nΩ(log n) in the worst case, and one can easily
show a matching upper bound for general graphs (A more involved proof on the upper
bound is also available in Carstensen [4]).

In the next section we will establish a connection between the stochastic shortest
paths with normal distributions and the parametric shortest paths problem, which will
enable us to apply our average and smoothed results for the former to the parametric
shortest path setting as well.

2.3 Quasi-convex maximization

In this section we briefly define convex functions and their generalization to quasi-
convex functions and state the main property of their global maxima.

Let C be a convex set.

Definition 1. A function f : C → (−∞,∞] is convex if for all x, y ∈ C and α ∈ [0, 1],

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y).

A function f : C → (−∞,∞] is quasi-convex if all its lower level sets Lγ = {x | x ∈
C, f(x) ≤ γ} are convex.

Informally, quasi-convex functions have a convex cross-section at any height (level).

Definition 2. We say that x is an extreme point of the set C if it cannot be represented
as a convex combination of two other points in the set C,

x = αy + (1 − α)z for y, z ∈ C, α ∈ (0, 1) ⇒ y = z = x.



The following important property of quasi-convex maximization seems to be at-
tributed to folklore. A statement of the theorem without proof appears in the Introduc-
tion to Global Optimization [8]; our proof is deferred to the full version of this paper.

Theorem 1. Let C ⊂ Rm be a compact convex set. A quasi-convex function f : C →
R that attains a maximum over C, attains the maximum at some extreme point of C.

We will need a few more definitions. The shadow of a convex set in Rm onto a
two-dimensional subspace is the orthogonal projection of the set onto the subspace.
The dominant of a set C in Rm is defined as the set of all points that are greater than a
point in C, {x ∈ Rm | x ≥ y for some y ∈ C}.

3 Stochastic shortest paths with normal distributions

In this section we apply quasi-convex maximization to a graph with normally distributed
edge lengths, in which we have to select the most certain route to reach a destination by
a given time.

Assume each edge i has independent normally distributed length Xi ∼ N(µi, σ
2
i ).

Our problem is to

max
π

Pr(
∑

i∈π

Xi ≤ t) for paths π between the source and destination. (2)

For any path π, this probability can be computed by

Pr
(

∑

i∈π

Xi ≤ t
)

= Pr
(

∑

Xi −
∑

µi
√

∑

σ2
i

≤ t − ∑

µi
√

∑

σ2
i

)

= Φ
( t − ∑

µi
√

∑

σ2
i

)

,

where Φ(.) is the cumulative distribution function of the standard normal random vari-
able N(0, 1). Since Φ is monotone increasing, the problem is equivalent to finding the
ST -path which maximizes its argument,

max
π

t − ∑

i∈π µi
√

∑

i∈π σ2
i

. (3)

The objective in Eq. (3) cannot be separated into edge costs and does not satisfy sub-
optimality so a dynamic programming approach based on substructure would fail. To
better understand the properties of the objective function, we formulate it as a contin-
uous optimization problem over the path polytope in Rm, where m is the number of
edges.

Index all edges by 1, 2, ..., m. Represent each edge subset by its incidence vector
x ∈ Rm, with xi = 1 if edge i is in the subset and xi = 0 otherwise. All 2m subsets of
edges correspond to the vertices of the unit hypercube in Rm. The ST -path polytope
(or, the path polytope for short) is the convex hull of incidence vectors of (simple) ST -
paths. It is a subset of the unit hypercube in Rm, and its vertices are a subset of the
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Fig. 1. Projection of the unit hypercube (representing all edge subsets) and the path polytope onto
the (µ, σ2)-plane.

vertices of the hypercube. Thus, the optimal ST -path is a solution to

maximize
t − µ · x√

σ2 · x
(4)

subject to x ∈ path polytope

x ∈ {0, 1}m,

where by {0, 1}m we denote the set of 0−1 vectors of length m. Projecting the path
polytope onto the span of vectors µ = (µ1, ..., µm) and σ2 = (σ2

1 , ..., σ2
m) defines

a convex polygon, which we call the path polytope shadow. The objective in Eq. (4)
is not separable, far from linear or quadratic and not even convex. This places it in a
category of mathematical programming and combinatorial optimization problems, for
which there are no general efficient algorithms. Although the integer constraints are
what usually causes the main difficulty, in this case it is not clear how to solve even the
fractional version.

It turns out our objective has special structure which forces its maximum to lie on
the boundary of the feasible set. In particular, it is quasi-convex on a subset of the path
polytope and monotone in µ · x and σ2 · x on the remaining subset of the polytope.
This is not automatically good news since we do not have a polynomial description
of the boundary of the path polytope or even its shadow. For example computing the
rightmost and uppermost vertices of the path polytope shadow corresponds to finding
the longest path, in terms of the edge means and edge variances respectively. Thus the
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computation of the path convex hull is in general strongly NP-hard [9]. On the other
hand, we can efficiently find the extreme points on the dominant of the shadow hull,
since they optimize the linear objective γµ + (1 − γ)σ2 for γ ∈ [0, 1].

Our main theorem 2 shows that for sufficiently early departure time (eliminating the
incidence of a longest path problem), our objective is quasi-convex and we can solve
the stochastic shortest paths problem exactly in time nΘ(log n). We first state a lemma
about the correspondence of the stochastic and parametric shortest paths problems. Its
proof is deferred to the full paper version.

Lemma 1. There is a one-to-one correspondence between the extreme points on the
shadow of the path polytope dominant on the plane spanned by vectors u = (u1, ..., um),
w = (w1, ..., wm) and the breakpoints of the parametric shortest path problem with
edge weights ui + λwi.

By Lemma 1, the results for the complexity of the parametric shortest paths problem
[4], [16] imply equivalent bounds for the number of extreme points on the shadow
dominant.

Corollary 1. The dominant of the path polytope shadow has nΘ(log n) extreme points
in the worst case.

We now turn to the main result in this section.

Theorem 2. When the deadline t is no less than the mean of the smallest-mean path,
the solution to Eq. (4) is an extreme point of the dominant of the path polytope shadow
and can be found in time nΘ(log n).

Proof. We first consider the relaxed version of Eq. (4). Denoting z1 = µ · x and z2 =
σ2 · x, the system becomes equivalent to

maximize
t − z1√

z2
(5)

subject to (z1, z2) ∈ path polytope shadow S



We first show that the induced objective f(z1, z2) = t−z1√
z2

is quasi-convex on a subset

of the feasible set S̄ = S ∩ {z1 | z1 < t} (which is non-empty assuming there is a path
with mean less than t). Since z1 = µ · x < t, the value of f(z1, z2) on this feasible
subset is positive, and must contain the maximum. Consider the level set Lγ = {z ∈
R2 | f(z) ≤ γ}. This set consists of points (z1, z2) such that

t − z1√
z2

≤ γ ⇐⇒ z2 ≥
( t − z1

γ

)2

,

hence for positive γ and z1 < t, the level set Lγ is convex. Therefore f(z1, z2) is
quasi-convex on S̄, which is the part of path polytope shadow to the left of z1 = t. By
Theorem 1, the maximum is attained at an extreme point of S̄. Further, since f(z1, z2)
is monotone decreasing in both z1 and z2, the solution must be an extreme point of the
dominant of the shadow, to the left of z1 = t.

Now, any extreme point of the shadow is the projection of an exteme point of the
original path polytope (which has integer coordinates). Hence the optimal solution of
the relaxed program (5) is also a solution to the integer program (4).

Next, the extreme points of the dominant of the shadow can be found in time linear
in their number, for example with a binary search type enumeration as follows. Each
extreme point on the shadow dominant is the solution to a linear program

min c · z (6)

subject to z ∈ shadow path polytope

for some c = (c1, c2) ≥ 0. Equivalently, each extreme point corresponds to a path
minimizing c1z1 + c2z2 where z1 = µ ·x is the total mean of the path and z2 is the total
variance so for c1, c2 ≥ 0 it can be found via any shortest path algorithm. To find all
extreme points on the shadow dominant, we start with its two endpoints: the leftmost
point, which corresponds to the path with smallest mean, and the bottom-most point,
which is the path of smallest variance. Denote these π1 = (m1, s1), π2 = (m2, s2) ∈
R2, where mi is the mean and si the variance of path πi, then solve Eq. (6) with
(c1, c2) = (− s2−s1

m2−m1

, 1) if m2−m1 6= 0, otherwise (c1, c2) = (1, 0). The new solution
is π3 = (m3, s3), a vertex between π1 and π2 on the shadow boundary. If different
from both π1 and π2, we repeat the procedure for finding a vertex between π1, π3 and
between π3, π2, etc. Clearly in this way we find all vertices on the shadow dominant in
time linear in their number, multiplied by the time to solve the auxiliary program (6).
Similar enumeration methods for extreme points are discussed in Carstensen [4].

Finally, since there are N = nΘ(log n) extreme points of the shadow dominant in the
worst case by Corollary 1 and we can find each in polynomial time, the running time of
the algorithm is nΘ(log n).

When the departure time is closer to the deadline, so that any shortest path has
mean greater than t, our objective is no longer quasi-convex, in fact it is increasing in
the variance. Since finding the simple path with highest variance is strongly NP-hard
[9], we might not expect to find a good polynomial-time approximation. Settling for
potentially non-simple paths, we can give a pseudopolynomial dynamic programming
solution, which finds the path of smallest mean for every possible value of its variance
and then selects the ST-path with optimal objective value.



Theorem 3. For general deadline t, the solution to Eq. (4) can be found in time O(σ2nm)
where σ2 is the maximum variance of an edge.

4 Average and Smoothed Complexity

In this section we show that if the edge weight vectors u, w ∈ Rm are uniformly random
unit vectors or fixed vectors which are slightly perturbed, then the expected number of
extreme points on the path polytope shadow is linear and consequently our nΘ(log n)

algorithm from the previous section will have a low expected polynomial running time.
The techniques in this section are motivated by the recent techniques of Kelner and
Spielman [10] for the polynomial simplex algorithm for linear programming.

Note that the vertices of the path polytope P are a subset of the vertices of the unit
hypercube, in particular:

Fact 1 Each edge of the polytope P has length at least 1.

Fact 2 The polytope P is contained in the unit hypercube, which in turn is contained
in a ball with radius

√
m/2.

4.1 Average bounds

Theorem 4. Let u, w ∈ Rm be uniformly random unit vectors and let V be their span.
Then the expectation of the number of edges on the projection of P onto V is at most
2
√

2πm.

Proof. By Fact 2, the perimeter of the shadow of P onto V is bounded above by π
√

m.
Next, for each edge I of the polytope P , denote by SI(V ) the event that edge I appears
in the shadow, and let l(I) be the length of the edge in the shadow. The sum of expected
edge lengths in the shadow is at most equal to the biggest possible perimeter:

∑

I

E[l(I)] =
∑

I

E[l(I)|SI(V )] Pr[SI(V )] ≤ π
√

m.

By Lemma 2 below, E[l(I)|SI(V )] ≥ 1
2
√

2m
. Therefore,

E[number of shadow edges] =
∑

I

Pr[SI(V )] ≤ 2
√

2πm,

where m is the dimension of the polytope P , in our case it is the number of edges of
the original graph.

Lemma 2. For all edges I of the polytope P , E[l(I)|SI(V )] ≥ 1
2
√

2m
.

Proof. We first note a direct corollary from Lemma 3.8 in Kelner & Spielman [10],
namely that if an edge I of the polytope appears in the shadow, it must make a small
angle θI(V ) with the projection plane V , PrV

[

cos(θI(V )) ≥ 1√
2m

| SI(V )
]

≥ 1
2 .

Now, since any edge in the polytope P has length at least 1 (by Fact 1 above),
the length of the edge in the shadow would be at least cos(θI(V )) and its expectation
provided it appears in the shadow is

E[l(I)|SI(V )] ≥ 1√
2m

1

2
.



4.2 Smoothed bounds

We now provide smoothed results for the maximization of our quasi-convex objective.
In particular, we show that the expected number of extreme points (equivalently edges)
on the projection of a general 0−1 vertex polytope onto a perturbed plane is polynomial
in m and 1/ρ, the inverse of our perturbation.

We first define a ρ-perturbation of the vector u, for ρ > 0. Choose an angle θ ∈
[0, π] at random from an exponential distribution with mean ρ, restricted to the range
[0, π]. Set the ρ-perturbation of u to be a unit vector chosen uniformly at random at an
angle θ to u. The following theorem states that the expected number of edges on the
polytope shadow is polynomial.

Theorem 5. Let u1, u2 ∈ Rm be given vectors and let v1 and v2 be their respective
ρ-perturbations. Denote V = span(v1, v2). The expected number of edges of the pro-
jection of P onto V is at most 4π

√
2m/ρ, for ρ < 1/

√
m.

The theorem follows similarly to the argument in Section 4.1 from the next lemma.

Lemma 3. With the variables above, Prv1, v2
[cos(θI (V )) ≤ ε |SI(V )] ≤ 4(ε/ρ)2.

This lemma generalizes the lemma of Kelner and Spielman [10] by allowing both v1

and v2 to be drawn from ρ-perturbed distributions, as opposed to requiring one of them
to be uniformly random. Its proof is deferred to the full version of this paper.

Naturally, the smaller the perturbation, the weaker the bound in the theorem. How-
ever setting ρ = 1√

2m
for example, gives the linear bound 8πm which is just a little

larger than the bound on the number of shadow edges for the average case. Finally note
that by Lemma 1, these bounds imply linear (in the number of graph edges) average
and smoothed bounds for the number of optimal paths in the parametric shortest paths
problem as well.

5 Extensions to other distributions

5.1 Poisson and additive stochastic dominant distributions—exact solution

The probability distribution D(λ) is called additive if the sum of two independent ran-
dom variables with distributions D(λ1) and D(λ2) is another random variable with the
same distribution and parameter equal to the sum, D(λ1 + λ2). With a slight abuse of
notation we use D(λ) to also denote a random variable with this distribution. Assume
in addition that the distribution D satisfies stochastic dominance, that is Pr(D(λ1) ≤
t) ≥ Pr(D(λ2) ≤ t) whenever λ1 ≤ λ2. Examples of such distributions are Poisson
and gamma(a, b) with constant parameter b.

Suppose the random length of edge i is Xi ∼ D(λi). Now, despite the non-separable
objective function, the form of distribution makes the problem separable:

Pr
(

∑

i∈π

Xi ≤ t
)

= Pr
(

∑

i∈π

D(λi) ≤ t
)

= Pr
(

D
(

∑

i∈π

λi

)

≤ t
)

≥ Pr
(

D(λ′) ≤ t
)

,

where the last inequality follows from the stochastic dominance property of the distri-
bution for all λ′ ≥ ∑

i∈π λi. With this, the optimal path is the one that has the smallest
sum of distribution parameters along its links and can be found exactly with a deter-
ministic shortest path algorithm.



5.2 Exponential PTAS and Bernoulli QPTAS

Unlike the Poisson, the exponential distribution is not additive and we cannot write a
simple closed form expression for the objective function. We propose a polynomial-
time approximation scheme, based on dynamic programming over a discretization of
the distribution parameter space. More precisely, we give a bicriterion approximation,
which is given a lateness tolerance p and for ε > 0 it finds an ST -path π satisfying

Pr
(

∑

i∈π

Xi < t(1 + ε)
)

> 1 − εp.

Due to space constraints, we defer the algorithm description to the full paper version
and only state its running time.

Theorem 6. An approximately optimal path π with Pr[
∑

i∈π Xi > (1+ ε)] ≤ p(1+ ε)

can be computed in time O(n4 log n)O
(

log(1/ε)
ε4 log 1

εp

)

γO( 1

ε
log 1/ε).

A similar discretization of the state space yields a quasi-polynomial approximation
scheme for the case of Bernoulli distributions; we omit the details from this version.

6 Conclusion

We have considered a novel framework for stochastic shortest paths with indepen-
dent random edge lengths. When the edges are normally distributed, we give an exact
nΘ(log n) algorithm. Several points worth noting are that this is an unusual algorithm
(not based on dynamic programming) with an unusual running time for the classic
shortest path problem in the presence of uncertainty. Although the problem is inher-
ently discrete, in its core are properties from continuous optimization. One possibility
to prove a polynomial worst-case bound on our nΘ(log n) algorithm is to restrict the
class of graphs under consideration. We conjecture that the number of extreme points
on the corresponding shadow dominant of planar graphs is polynomial (linear) in the
size of the graph.

We present polynomial average and smoothed bounds with respect to the means
and variances of the edge length distributions in the case of normal distributions. We
note that these bounds hold for the maximization of any quasi-convex function of rank
2 (that is, a function of the form f(a · x, b · x) for vectors a, b ∈ Rm) over general
polytopes with 0−1 vertex coordinates. Our results could be further generalized [18]
and apply to diverse other settings as well as serve of independent interest to non-convex
optimization.

Other open questions for our stochastic shortest path model include considering
correlated as well as dynamically varying edge length distributions.
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