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Abstract

Two-Dimensional (2-D) correction schemes are proposed to improve the performance of con-
ventional min-sum (MS) decoding of irregular low density parity check codes. An iterative
procedure based on parallel differential optimization is presented to obtain the optimal 2-D fac-
tors. Both density evolution analysis and simulation show that the proposed method provides a
comparable performance as belief propagation (BP) decoding while requiring less complexity.
Interestingly, the new method exhibits a lower error floor than that of BP decoding. With respect
to conventional MS and 1-D normalized MS decodings, the 2-D normalized MS offers a better
performance. The 2-D offset MS decoding exhibits a similar behavior.
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Two-Dimensional Correction for Min-Sum
Decoding of Irregular LDPC Codes

Juntan Zhang, Marc Fossorier, Daqing Gu, and Jinyun Zhang

Abstract— Two-dimensional (2-D) correction schemes are pro-
posed to improve the performance of conventional min-sum (MS)
decoding of irregular low density parity check codes. An iterative
procedure based on parallel differential optimization is presented
to obtain the optimal 2-D factors. Both density evolution analysis
and simulation show that the proposed method provides a
comparable performance as belief propagation (BP) decoding
while requiring less complexity. Interestingly, the new method
exhibits a lower error floor than that of BP decoding. With
respect to conventional MS and 1-D normalized MS decodings,
the 2-D normalized MS offers a better performance. The 2-D
offset MS decoding exhibits a similar behavior.

Index Terms— LDPC codes, belief propagation, min-sum de-
coding.

I. INTRODUCTION

LOW-density parity-check (LDPC) codes [1] with BP
decoding [2] achieve a remarkable error performance

near to the Shannon limit [3]. Nevertheless it can become
too complex for hardware implementation. By approximating
the calculation at the check nodes with a simple minimum
operation, the MS algorithm reduces the complexity of BP [4].
While MS is hardware efficient, its performance is often much
worse than that of BP. It has been observed that the degradation
due to MS decoding can be compensated by linear post
processing (normalization or offset) of the messages delivered
by check nodes [5]. Simulation results and density evolution
analysis show that for decoding regular LDPC codes, normal-
ized or offset MS with a single correction factor is sufficient to
achieve performance close to that of BP decoding. For many
irregular LDPC codes [6], however, conventional correction
MS exhibits a large performance degradation compared to
that of BP. In this paper, we present a 2-D normalized MS
decoding of irregular LDPC codes. In 2-D normalized MS
scheme, belief messages outgoing from both check and bit
node processors are normalized. The normalization factor of a
check (bit) node processor depends on the degree of that node.
To circumvent brute force search which is intractable for most
irregular LDPC codes of practical interests, parallel differential
optimization and density evolution are used to obtain the 2-D
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optimal normalization factor pair. We also extend this idea to
2-D offset MS decoding.

II. STANDARD BP

Suppose a binary (N, K) LDPC code is used with BPSK
signaling over an AWGN channel. Let H = [Hmn] be the
parity check matrix which defines this LDPC code. We denote
N (m) = {n : Hmn = 1} and M(n) = {m : Hmn = 1}. Let
Uch,n be the log-likelihood ratio (LLR) of bit n. At iteration
i, let U

(i)
mn and V

(i)
mn be the LLR of bit n which are sent from

check node m to bit node n and from the bit node n to check
node m, respectively. The check node and bit node processing
steps in the standard LLR BP algorithm are carried out as
follows [2]:

(i) Horizontal Step, for 1 ≤ n ≤ N and each m ∈M(n):

U (i)
mn = 2 tanh−1

∏

n′∈N (m)\n
tanh

V
(i−1)
mn′

2
. (1)

(ii) Vertical Step, for 1 ≤ n ≤ N and each m ∈M(n):

V (i)
mn = Uch,n +

∑

m′∈M(n)\m
U

(i)
m′n. (2)

III. MS AND NORMALIZED MS DECODING

Taking advantage of the odd property of the function
tanh()1, MS simplifies the updating rule in check nodes by
modifying (1) into

U (i)
mn =

∏

n′∈N (m)\n
sgn

(
V

(i−1)
mn′

)
· min

n′∈N (m)\n
|V (i−1)

mn′ | (3)

The normalized MS modifies the check node processing (3)
as

U i
mn ← α · U i

mn (4)

where α is a normalization factor, 0 < α ≤ 1.

IV. 2-D NORMALIZED MS

Another way to improve the performance of MS is to
reprocess the LLR from bit nodes by modifying (2) into

V (i)
mn = Uch,n + β ·

∑

m′∈M(n)\m
U

(i)
m′n (5)

where β is a normalization factor. For regular LDPC codes,
normalization factor is the same for each check (bit) node.

1This property implies sgn
“
2 tanh−1Q

n′ tanh
Vmn′

2

”
=Q

n′ sgn(Vmn′ ).
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In this case, bit node normalization (5) is equivalent to check
node normalization. For irregular LDPC codes, the conven-
tional normalized MS only reprocesses the LLRs outgoing
from check nodes while keeping the bit node processor un-
changed. The outgoing LLRs are normalized equally without
considering the degree differences among the adjacent bit
nodes in the graph representation of the code. However,
intuitively, for bit nodes with different degrees, this same
incoming LLR should play a different role in the outgoing
LLRs. This suggests to apply normalization in both check and
bit nodes. As conventionally, only outgoing LLR from check
nodes (horizontal step) are normalized, we refer to it as one-
dimensional normalized MS while we refer to this proposed
approach as 2-D (both horizontal and vertical step) normalized
MS decoding.

A. 2-D normalized MS
Consider an irregular LDPC code with degree distribution

λ(x) =
dvmax∑

j=1

λjx
j−1 and ρ(x) =

dcmax∑

j=1

ρjx
j−1, which

specify the degree distribution of bit nodes and check nodes,
respectively. Let αj be the normalization factor for check
nodes with degree j, for j = 1, 2, . . . , dcmax. Let βj be
the normalization factor for bit nodes with degree j, for
j = 1, 2, . . . , dvmax. Let dv(n) be the degree of bit node
n, for n = 1, 2, . . . , N . Let dc(m) be the degree of check
node m, for m = 1, 2, . . . , M . 2-D normalized MS decoding
is specified by
(i) Horizontal Step, for 1 ≤ n ≤ N and each m ∈M(n):

U (i)
mn = αdc(m)

∏

n′∈N (m)\n
sgn

(
V

(i−1)
mn′

)
min

n′∈N (m)\n
|V (i−1)

mn′ |

(ii) Vertical Step, for 1 ≤ n ≤ N and each m ∈M(n):

V (i)
mn = Uch,n + βdv(n) ·

∑

m′∈M(n)\m
U

(i)
m′n (6)

Note that if the code is either bit-regular or check-regular,
only one dimensional normalization is needed (normalization
factors still can be different for nodes with different weights).

B. Density evolution for 2-D normalized MS
It is straightforward to verify that 2-D normalized MS

decoding satisfies the channel, check node, and bit node
processing symmetric conditions and therefore its density
evolution can be analyzed based on the all-zero transmit-
ted codeword [3]. However there is no guarantee that the
probability of error is non-increasing for 2-D normalized MS
decoding [7]. In MS decoding, let f

(i)
U (u) and f

(i)
V (v) be the

pdfs of LLRs from check and bit nodes, respectively. The
density evolution of 2-D normalized MS is specified by

f
(i)
U (u) ←

dcmax∑

j=1

ρj

αj
f

(i)
U

(
u

αj

)

f
(i)
V (v) ←

dvmax∑

j=1

λj

βj
F−

(
F(fUch

) ·
(
F(f (i)

U )
)j−1

)(
v

βj

)

C. Parallel differential evolution for 2-D normalized MS

Let α = {α1, α2, . . . , αdcmax
} and β =

{β1, β2, . . . , βdvmax
} be the normalization factors (vectors)

of check and bit nodes in 2-D normalization MS decoding,
respectively. Given an irregular LDPC code with degree
distribution pair (λ, ρ) and a normalization factor pair
(α,β), we can evaluate the threshold of this code with 2-D
normalized MS decoding, by using density evolution. We
search for the normalization factor pair (α,β) which yields
the largest noise threshold. This is a nonlinear minimization
problem with continuous space parameters. The brute force
search method becomes intractable when dvmax · dcmax

is large. However an algorithm called parallel differential
optimization has been shown to be efficient and robust. In [6],
this technique has been successfully applied to construct
irregular LDPC codes. In this paper, parallel differential
optimization is used to generate the normalization factor pair
of 2-D normalized MS decoding.

Given an irregular (dvmax, dcmax) LDPC code, the number
of degrees of freedom for a normalization factor pair is dvmax ·
dcmax. In differential evolution optimization, the population
of each generation is often selected to be a multiple of the
number of degrees of freedom. Let L = T · dvmax · dcmax

be the population in each generation, where T is a constant.
Apparently, the larger the value of T , the higher the probability
that a better result can be found, and correspondingly the
higher the needed complexity. Let (α(g)

l , β
(g)
l ) denote the l-th

member of generation g. The procedure to find the optimal
factor pair of 2-D normalized MS based on density evolution
and parallel differential optimization is carried out as follows

1 Initialization: Set the maximum number of gener-
ations to Gmax and the generation index g = 0.
Randomly generate a set of pairs {(α(0)

l , β
(0)
l )}

with cardinality L. For l = 1, 2, . . . , L, run den-
sity evolution of 2-D normalized MS based on the
factor pair (α(0)

l , β
(0)
l ) and obtain the corresponding

threshold ( Eb

No
)(0)l . Then find the factor pair which

yields the smallest Eb

No
. We denote this best pair as

(α(0)
lbest

,β
(0)
lbest

), where lbest = arg
L

min
l=1

(
Eb

No

)(0)

l

.

2 Mutation and test: Set g ← g+1. For l = 1, 2, . . . , L,
generate J distinct random numbers {rj |1 ≤ rj ≤
L, rj 6= l}, and generate the test vector

(α(g+1)
l ,β

(g+1)
l )t = (α(g)

lbest
,β

(g)
lbest

)

+γ ·
( ∑

1≤j≤J
j:odd

(α(g)
rj

,β(g)
rj

)−
∑

1≤j≤J
j:even

(α(g)
rj

, β(g)
rj

)

)

where γ is a pre selected constant which controls the
amplification of the differential variation. The use
of differences between candidate vectors increases
the variation, helping the iteration escaping from
a local minimum. Then for l = 1, 2, . . . , L, run
density evolution of 2-D normalized MS based on the
newly generated pair (α(g+1)

l ,β
(g+1)
l )t and obtain

the corresponding threshold ( Eb

No
)(g+1)
l,t .
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3 Compare and update: For l = 1, 2, . . . , L, set

(α(g+1)
l , β

(g+1)
l )

=

{
(α(g+1)

l , β
(g+1)
l )t if ( Eb

No
)(g+1)
l,t ≤ ( Eb

No
)(g)
l

(α(g)
l ,β

(g)
l ) otherwise

and

(
Eb

No

)(g+1)

l

=





(
Eb

No

)(g+1)

l,t
if

(
Eb

No

)(g+1)

l,t
≤

(
Eb

No

)(g)

l(
Eb

No

)(g)

l
otherwise

Then update the best factor pair of
generation g + 1 to (α(g+1)

lbest
,β

(g+1)
lbest

), where

lbest = arg
L

min
l=1

(
Eb

No

)(g+1)

l

.

4 Stopping test and output: If Gmax is reached or the
smallest threshold of generations stops decreasing,
output (α(g+1)

lbest
,β

(g+1)
lbest

). Otherwise, go to Step 2.

It is worth mentioning that the algorithm can be extended in a
straightforward way if different normalization factors are used
at different iterations, in which case the error performance of
2-D normalized MS decoding can be improved further.

V. 2-D OFFSET MS

The conventional (1-D) offset MS algorithm improves the
accuracy of MS decoding by reducing the reliability of Umn

by a positive constant σ [5]

Umn ← sgn(Umn) ·max(|Umn| − σ, 0). (7)

In 2-D offset MS decoding, belief messages coming from both
check nodes and bit nodes are reduced by constants which are
associated to the degrees of the corresponding check and bit
nodes. More precisely, let σj’s be the offset factors for check
nodes with degree j, for j = 1, 2, . . . , dcmax, and let υj’s
be the offset factors for bit nodes with degree j, for j =
1, 2, . . . , dvmax. Then 2-D offset MS decoding is specified by
(i) Horizontal Step, for 1 ≤ n ≤ N and each m ∈M(n):

U (i)
mn =

∏

n′∈N (m)\n
sgn

(
V

(i−1)
mn′

)

·max

(
min

n′∈N (m)\n

∣∣∣V (i−1)
mn′

∣∣∣− σdc(m), 0

)
.

(ii) Vertical Step, for 1 ≤ n ≤ N and each m ∈M(n):

V (i)
mn = Uch,n + sgn

(
S

U
(i)
m′n

)
·max

(∣∣∣SU
(i)
m′n

∣∣∣− υdv(n), 0
)

,

where

S
U

(i)
m′n

=
∑

m′∈M(n)\m
U

(i)
m′n.

The procedures to obtain the optimal offset factors for 2-D
offset MS are similar to that in Section IV-C [8].
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Fig. 1. WER of the standard BP, 2-D normalized Min-Sum, 2-D offset
Min-Sum conventional normalized Min-Sum and Min-Sum algorithms for
decoding a (16200,7200) irregular LDPC code (Imax=200).

VI. SIMULATION RESULTS

Figure 1 depicts the word error rate (WER) of standard
BP, 2-D normalized MS, 2-D offset MS, 1-D normalized MS
and MS decodings of a (16200,7200) irregular LDPC code.
The check and bit node distributions of this code are ρ(x) =
0.00006x2+0.14917x3+0.29851x4+0.44777x5+0.10449x6

and λ(x) = 0.00002 + 0.38803x + 0.31344x2 + 0.29851x7,
respectively. The thresholds computed by density evolution for
standard BP, MS, 1-D normalized MS, 2-D normalized MS,
and 2-D offset MS decodings are 0.77dB, 0.93dB, 0.90dB,
0.85dB, and 0.85dB, respectively. We observe that 2-D nor-
malized and offset MS provide a comparable performance
as BP and interestingly have a lower error floor than that
of BP. We also observe that 2-D normalized and offset MS
outperform 1-D normalized MS and MS by about 0.3dB.
The normalization factor for 1-D normalized MS is α =
0.75. The optimum normalization vectors of 2-D normal-
ized MS decoding are α = (1.00, 0.94, 0.92, 0.88, 0.86) and
β = (1.00, 1.00, 0.91, 0.83). The optimum offset vectors for
check and bit nodes in 2-D offset MS decoding are σ =
(0.00, 0.26, 0.31, 0.35, 0.37) and υ = (0.00, 0.00, 0.20, 0.31),
respectively.
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