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Abstract— In this paper, performances of stored-reference
(SR), transmitted-reference (TR), and energy detection (ED)
based time of arrival (TOA) estimation techniques are analyzed
for impulse-radio ultra-wideband (IR-UWB) systems. Various
maximum likelihood estimation approaches are investigated un-
der different observation models, and a new estimator that
exploits the noise statistics and power delay profile of the channel
is proposed. Simulation results show that ED and TR perform
well if the sampling rate is much smaller than the Nyquist rate.
Also, exploiting the channel and noise statistics considerably
improves the accuracy of peak selection.

I. I NTRODUCTION

Ultra-wideband (UWB) is a technology that has distinct
features characterized by its extremely wide bandwidth. Due
to the high time resolution of the received signal, it is possible
to accurately identify the first arriving impulse radio (IR)-
UWB signal path, which may not be the strongest. Precision
ranging is achieved by leading edge detection of the received
samples using appropriate algorithms. However, due to the
large bandwidths employed on the order of gigahertz, typical
UWB receivers can not operate at Nyquist rate. Instead,
energy can be captured at lower sampling rates after certain
analog front-end processing and using different transceiver
architectures.

The energy detection (ED) of the signal is achieved by
passing the signal through a square-law device, followed by
an integrator and sampler. On the other hand, the signal can
be correlated via a stored-reference (SR) before integrateand
dump circuitry, which is more robust to noise effects due
to noise-free template employed. In order to avoid timing
and pulse-shape mismatch between the reference template
and received signal, a transmitted-reference (TR) can also
be considered, where a reference template accompanies and
matches to the transmitted data signal with a known delay in
between. The low-rate digital samples obtained with eitherof
ED, SR or TR are then processed for leading edge detection
of the IR-UWB signal.

Typical approaches for UWB time of arrival (TOA) estima-
tion in the literature are based on Nyquist rate (or close to
Nyquist rate) sampling of the signal [1], [2], using an SR [3],
[4], and using an ED [4], [5]. Once the samples are collected
using these schemes, algorithms such as threshold comparison
(TC) [6], [7], maximum energy selection (MES) [3], [5],
[8]-[10], or their combination [1], [11] are applied to the
samples for leading edge detection. Techniques for improving
the accuracy of MES are introduced in [11], while optimal
threshold estimation techniques are discussed in [6]. Tian
et. al. successfully appliesdata-aided Generalized likelihood
ratio testing for acquisition of UWB signals in [12], where
noisy templates deduced from consecutive symbols are used
that asymptotically approaches ideal templates for very large

number of training symbols. Method of moments estimator
was used in [4] for evaluating the parameters of the likelihood
function in a multiple hypothesis testing formulation, which
may be computationally costly. Trade-off’s between stored-
reference and transmitted-reference transceiver types for sym-
bol detection was addressed in [13].

The performance trade-off’s between different transceiver
architectures for UWB ranging are not addressed in the
literature to the best knowledge of the authors. In this paper,
SR, TR, and ED based TOA estimation schemes are analyzed,
their statistics are discussed, and performances are compared
via simulations. Multiple hypothesis testing techniques are
investigated. A Bayesian algorithm that gives a lower bound
is presented, and maximum likelihood techniques based on
different observation models and with various complexity
levels are introduced. The analysis shows that when under-
sampled signal is considered, SR is more susceptible to timing
mismatches compared to TR and ED.

II. SYSTEM MODEL

While the transmitted signals are the same for SR and ED
receivers, TR includes delayed version of the same signal, and
therefore yielding a slightly different transmitted signal model.
Let the received UWB multipath signal for the former schemes
be represented as

r(t) =

∞∑

j=−∞

djωmp

(
t − jTf − cjTc − τtoa

)

︸ ︷︷ ︸

rs(t)

+n(t) , (1)

while for the TR case the received signal is modeled by1

r̃(t) =
1√
2

(
rs(t) + rs(t − D)

)
+ n(t) , (2)

where frame index and frame duration are denoted byj and
Tf , Ns represents the number of pulses per symbol,Tc is the
chip duration,Ts is the symbol duration,τtoa is the TOA of
the received signal, andNh is the possible number of chip
positions per frame, given byNh = Tf/Tc. Effective pulse
after the channel impulse response is given byωmp(t) =√

E
∑L

l=1 αlωl(t−τl), whereωl(t) is the received UWB pulse
at lth tap with unit energy,E is the pulse energy,αl andτl are
the fading coefficients and delays of the multipath components,
respectively. Additive white Gaussian noise (AWGN) with
zero-mean and double-sided power spectral densityN0/2 and
varianceσ2 is denoted byn(t). The delay between the data and

1Even though we refer the pair of signals in TR as reference anddata
signals, this is just for the sake of distinction, and we consider no data
modulation for ranging purposes.
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Fig. 1. Illustration of transmitted IR-UWB pulses in a symbol,
where (Ns, Nh) = (5, 4), Tb = 3Tc, and

�
{cj}, {dj}

�
=�

{0, 2, 1, 1, 0}, {+1,−1,−1, +1,−1}
�
. The pulses with solid lines corre-

spond to ED and SR. Dashed pulses can be included for TR (afterappropriate
energy scaling) withD = 2Tc.

reference signals is denoted byD, and energy is appropriately
scaled so that energy per symbol is identical for all cases. No
modulation is considered for the ranging process. In order to
avoid catastrophic collisions, and smooth the power spectral
density of the transmitted signal, time-hopping codesc

(k)
j ∈

{0, 1, ..., Nh − 1} are assigned to different users. Moreover,
random-polarity codesdj ∈ {±1} are used to introduce
additional processing gain for the detection of desired signal,
and smooth the signal spectrum (see Fig. 1).

A. Sampling the Received Signal After Different Energy Col-
lection Techniques

The signal arriving at the receiver’s antenna is passed
through a low noise amplifier (LNA) and a band pass filter
(BPF) of bandwidthB. Different approaches for collecting
the energy are possible before sampling the signal in (1)
or (2). The received signal can be sampled after a square-
law device (Fig. 2a), after correlation with a stored-reference
signal (Fig. 2b), or after correlation with a transmitted-
reference signal (Fig. 2c). Block duration (which depends on
the sampling interval) is denoted byTb, and can be the taken
as Tc for chip-spaced sampling. In the sequel, we assume
that a coarse acquisition on the order of frame-length is
acquired in (1), suchτtoa ∼ U(0, Tf ), whereU(.) denotes
the (continuous) uniform distribution. The signal within time
frameTf plus half of the next frame is sampled and searched
to factor-in inter-frame leakage due to multipath. The number
of samples (or blocks/chips) is denoted byNb = 3

2
Tf

Tb
, and

n ∈ {1, 2, ..., ntoa, ..., Nb} denotes the sample index with
respect to the starting point of the uncertainty region.

With a sampling interval ofts, the sample values at the
output of the square-law device are given by

z(ed)
n =

Ns∑

j=1

∫ (j−1)Tf +(cj+n)ts

(j−1)Tf +(cj+n−1)ts

|r(t)|2dt , (3)

while the stored-reference template signal and the samples
after correlating the received signal with this template are
given by,

stmp(t) =

Ns−1∑

j=0

djω
(
t − jTf − cjTc

)
, (4)

z(sr)
n =

∫ (n−1)ts+NsTf

(n−1)ts

r(t)stmp

(
t − (n − 1)ts

)
dt , (5)

respectively, whereω denotes the correlator pulse shape2. The
samples after correlating with the delayed version of the signal

2Note that since received pulse shapeωl can change at different multipath
components,ω will not typically match with the received pulse shapes.
However, we have usedω = ωl for all l in the simulations for simplicity.
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Fig. 2. Sampling of the received signal after a) Energy detection, b)
Correlation with a local reference, and c) Correlation witha transmitted
reference.

itself is formulated as

z(tr)
n =

Ns∑

j=1

∫ (j−1)Tf+(cj+n)ts

(j−1)Tf+(cj+n−1)ts

r̃(t)r̃(t − D)dt , (6)

and the performance can be further improved in all cases by
transmitting multiple symbols.

B. Trade-off’s Between Different Transceiver Architectures

It is very well known that matched filtering, where a
stored reference signal is correlated with the received signal,
is optimal detection technique when the knowledge of the
received waveform shape is available. However, Nyquist-rate
sampling is essential to match with the received signal, so that
perfect alignment with the template and received waveform
can be obtained. If only lower sampling rates are possible,
it is apparent from (5) that SR will not be able to collect
sufficient energy from the received multipath arrivals due to
the timing (as well as pulse-shape) mismatches between the
stored template signal and the received waveform.

On the other hand, ED and TR signaling can both effectively
capture the received energy. Even with low sampling rates,
neither non-coherent schemes require the knowledge of the
timings or pulse shapes, which are perfectly available (as-
suming accurate delay lines for the TR case). The existence
of the transmitted-reference pulse yields a3dB transmitted
energy loss compared with the other two schemes. Illustration
of the timing susceptibility for SR, TR, and ED are presented
in Fig. 3. If sufficient sampling rate is available, SR will
better characterize the peak; however, with low sampling rates
(e.g. < 1ns), it is more likely that SR will loose the peak
completely.

The serious problem with both the non-coherent approaches
is the enhanced noise terms in the low SNR region. In par-
ticular, noise-square terms for the ED, and noise-cross-noise
terms for TR seriously dominate and degrade the detection
performance. Therefore, even though non-coherent approaches
outperform SR at high SNR due to better energy capture (with
moderate sampling rates), they have poor performance when
the noise variance is large. Due to similar reasons, TR and ED
are much more susceptible to interference compared to SR. In
Fig. 4, the energy statistics are depicted and summarized for
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Fig. 3. Receivednormalized pulse shape, and the sampled outputs corre-
sponding to SR, ED, and TR for different timing offsets (1ns pulse is sampled
at 8GHz, and energy is collected within1ns windows and different offsets).
The ED and TR outputs will scale withE, while SR output will scale with√

E for different Eb/N0.

the three approaches for a given time interval3. It is observed
that noise variance seriously increases for the non-coherent
approaches, while the ED achieves the best energy collection.

Comparing the transmitted waveforms, TR has a longer
time span compared to ED and SR, andD has to be large
enough so that multipath interference between reference and
data pulses is not a serious problem. Also, TR observes
enhanced early/late (E/L) noise terms that arise when either
the reference or data signal samples are correlated with the
noise-only samples. This scales the noise variance at±D of
the actual TOA by the signal energy.

III. M ULTIPLE HYPOTHESISTESTING FORTOA
ESTIMATION

Once the received signal is sampled, and leading edge of
the signal lies within an interval of samples, TOA estimation
can be achieved by amultiple hypothesis testing (MHT), and
by choosing the hypothesis that maximizes the likelihood
function [14]. Based on the observation model, and amount
of a priori information available about the received signal
(channel statistics, noise variance etc.), different TOA esti-
mators can be defined. In this section, maximum likelihood
estimators with different complexity levels will be presented.
Also, Bayesian detection that gives a theoretical lower bound
on the TOA estimate will be introduced. In order to have a
unified analysis, the absolute values of the samples in (5) and
(6) are used4, denoted by a common notationzn for any of
the three schemes. Also, ED will be taken as a case study to
define the signal statistics; however, similar analysis canbe
carried out for the other two schemes.

3The scales are adjusted for the sake of illustration and comparison between
different schemes, and only comparatively represents actualscaling.

4Which actually changes statistics after the sampler of SR and TR in Fig. 4.
Since no channel estimate is available at ranging step, it is not possible to
coherently process SR samples.
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Fig. 4. Comparison of mean and variance statistics of the sampled received
signal in the presence and absence of signal energy within a certain sampling
interval: a) Stored-reference, b) Transmitted-reference,c) Energy detection.
Note that for accurate timing,Eed = 2Etr = E2

sr = E, while while for
timing mismatches,Eed = 2Etr > Esr (assuming accurate delay lines for
TR).

A. Problem Formulation

Let z denote the1×Nb vector of sampleszn, Ne denote the
number of signal plus noise energy samples,z

(no)
k and z

(sn)
k

denote (for thekth hypothesis) the noise-only energy vector
and signal plus noise energy vector of sizes1 × (Nb − Ne)
and 1 × Ne, respectively, where vectors on the two sides of
signal plus noise vectorz(sn)

k are concatenated to yieldz(no)
k .

Consider an ED withNs = 1 and no time hopping, and let
Tb = ts. Then, following multiple hypothesis testing can be
considered fork = 1, 2, ..., Nb

Hk : zn =
∫ nTb

(n−1)Tb
η2(t)dt, n = 1, ..., k − 1

zn =
∫ nTb

(n−1)Tb

[
rs(t) + η(t)

]2
dt, n = k, ..., k + Ne − 1

zn =
∫ nTb

(n−1)Tb
η2(t)dt, n = k + Ne, ..., Nb

(7)

whereη(t) is the noise after the BPF (signal part is assumed
to be undistorted due to BPF). Using the Chi-square statistics
that arise due to square-law device, (7) becomes

Hk : zn = χ(M), n = 1, ..., k − 1
zn = χ(En,M), n = k, ..., k + Ne − 1
zn = χ(M), n = k + Ne, ..., Nb

(8)

where Chi-square random variable is denoted withχ, with
parameterM for the centralized, and parameters(En,M) for
non-centralized cases, respectively. The degree of freedom of
the noise terms is denoted byM = 2Bts + 1. The signal
energy in thenth block is denoted byEn, which has a different
distribution in different blocks. For notational convenience,
define indexm ∈ {1, 2, ..., Ne} for the signal plus noise
energy vector for the range ofk ≤ n ≤ k + Ne − 1, where
m = n − k + 1, and Em = En. Gaussian approximation
can be used to modelzn for large enoughM , where the
means and variances becomeµn = Mσ2, σ2

n = 2Mσ4 for
the centralized, andµn = Mσ2 + En, σ2

n = 2Mσ4 + 4σ2En

for the non-centralized Chi-square distributions.

428



B. Maximum Likelihood Estimation
Probably the simplest way of achieving the leading en-

ergy block estimate is maximum energy selection (MES)
from the individual energy samples, which yieldŝntoa =
argmax

k∈{1,...,Nb}

{
zk

}
. However, MES is susceptible to noise since

the energy in only a single sample is used, and it does not
provide high timing resolution as there may be a large delay
between the leading edge and the maximum energy block (as
much as60ns for CM1). In order to exploit the energy in
the neighboring multipath components, energy samples can be
summed within a window, and the leading block estimate using
maximum energy sum selection (MESS) is given byn̂toa =

argmax
k∈{1,...,Nb}

{
z
(sn)
k ×1Ne

}
, which is similar conceptually to the

synchronization algorithm in [5] except the window definitions
and signaling schemes.

If somea-priori knowledge about the channel power delay
profile is available, it can be used to weight the hypothesized
energy vector, which yieldŝntoa = argmax

k∈{1,...,Nb}

{
z
(sn)
k × ρ

Ne

}
,

where ρ
Ne

is the exponentially decaying column vector of
1 × Ne mean energies for a particular channel model and
block duration (see Fig. 5, where even though the normal-
ized channel impulse responses of both channel models have
unit energy, the signal energy after convolved with a pulse
considerably decreases for CM2 due to its dispersive nature
and inter-pulse interference). This weighted-MESS (W-MESS)
is actually identical to correlating the received energy vector
with the mean energy values before peak selection.

In addition that the captured energy is maximized, for the
case of accurate hypothesis selection, the noise parameters
µ̂

(no)
k and σ̂

(no)
k will also be minimized. Therefore, weighting

the energy sum in W-MESS with the inverse of these parame-
ters will increase the accuracy, where the TOA estimate for
W2-MESS becomes

n̂toa = argmax
k∈{1,...,Nb}

{ z
(sn)
k × ρ

Ne

µ̂
(no)
k × σ̂

(no)
k

}

. (9)

Note that for both W-MESS and W2-MESS, even if the
power delay profile is not exactly available, an appropriate
exponential can be used to weight the energy vector to enhance
the performance of the MES.

C. Generalized Maximum Likelihood Estimation
The generalized maximum likelihood (GML) estimate of

the leading energy block requires estimation of the statistical
parameters at each sample. Using the Gaussian approximation
of the Chi-square statistics, GML estimate is given by

n̂toa = argmax
k∈{1,...,Nb}

{

p(z |k, µ̂
k
, σ̂k)

}

, (10)

where µ̂
k

= [µ̂
(no)
k , µ̂

(sn)
k,1 , ..., µ̂

(sn)
k,Ne

], σ̂k =

[σ̂
(no)
k , σ̂

(sn)
k,1 , ..., σ̂

(sn)
k,Ne

] are the maximum likelihood estimates
(MLE) of mean and standard deviation vectors of size
1 × (Ne + 1) each, which maximize the likelihood function
for the kth hypothesis. Therefore, GML estimation requires
2(Ne + 1) parameters to be estimated foreach hypothesis5.

5In fact, using the dependencies between the mean and varianceparameters,
estimation ofE and σ2 is sufficient, yieldingNe + 1 parameters to be
estimated.
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The MLEs for the noise-only vector parameters are eval-
uated asµ̂

(no)
k = 1

Nb−Ne
z
(no)
k × 1Nb−Ne

, and σ̂
(no)
k =

1
Nb−Ne

[

(z
(no)
k − µ̂

(no)
k )(z

(no)
k − µ̂

(no)
k )T

]1/2

, respectively,
where 1ν is a column vector of sizeν. The MLE of the
parameters for the signal plus noise energy blocks can be
obtained by assuming thatz(sn)

k decays exponentially on the
average (see Fig. 5). However, for individual channel realiza-
tions, there will be multiple clusters, and forcing a single-
exponential fit to the received samples yields a modeling
error (as will be observed in simulation results). Nevertheless,
the mean corresponding to each hypothesis of signal plus
noise vector can be modeled by an exponential of the form
µ̂

(sn)
k,m = A1,k exp(−A2,km)+A3,k, whereA3,k = µ̂

(no)
k and is

estimated from hypothesized noise-only blocks. ParameterA2

may be assumed fixed (knowing the channel model), which
yields a low-complexity exponential fit to the data (GML-
v1). Alternatively,A2 can be jointly estimated withA1, which
is computationally more complex (GML-v2). Once the mean
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energies are estimated, in order to calculate the standard
deviation for each block (which are required for calculating the
likelihood function in (10) using the Gaussian approximation),
the following simple relationships can be used:µ̂

(sn)
k,m =

Mσ2 + Êm = µ̂
(no)
k + Êm, σ̂

(sn)
k,m =

(
2Mσ4 + 4σ2Êm

) 1
2 =

(

[σ̂
(no)
k ]2 + 4

µ̂
(no)
k

M Êm

) 1
2

, where Êm from the first equality
can be plugged into the second equality, yielding

σ̂
(sn)
k,m =

(

[σ̂
(no)
k ]2 + 4

µ̂
(no)
k

M

(
µ̂

(sn)
k,m − µ̂

(no)
k

))
1
2

. (11)

D. Bayesian Estimation

If the distribution ofEm are knowna-priori for each energy
block m, and noise varianceσ2 is known exactly (both
of which are extremely difficult in most cases), anoptimal
solution can be developed using a Bayesian approach. The
leading energy block estimate in this case is given by

n̂toa = argmax
k∈{1,...,Nb}

{ ∫

E1

∫

E2

...

∫

ENe

p(z |k, σ, E)

× p(E1)...p(ENe
)dENe

...dE1

}

, (12)

where E = [E1, E2, ..., ENe
] is the vector of signal energies

in the signal plus noise blocks. Distributions of normalized
energies within100 discrete bins in(0, 1) are presented in
Fig. 6 for CM1, and it is desirable to chooseNe on the order
of maximum excess delay to have accurate estimates. Since it
is usually very hard to know the prior PDFs of the parameters,
and it requires multidimensional integration over the PDF
of each parameter yielding a very complex implementation,
Bayesian analysis is usually of theoretical interest rather than
practical consideration.

IV. SIMULATION RESULTS

Computer simulations are performed to evaluate the in-
troduced TOA estimation techniques. The channel models
CM1 (residential LOS) and CM2 (residential NLOS) of
IEEE802.15.4a are employed. The channel realizations are
sampled at8GHz, 1000 different realizations are generated,
and each realization has a TOA uniformly distributed within
(0, Tf ). A raised cosine pulse ofTc = 1ns is considered for
all scenarios. After introducing uniformly distributed delays,
energies are collected within non-overlapping windows to
obtain decision statistics. The other simulation parameters are
(unless otherwise stated)Tf = 200ns, B = 4GHz, Ns = 1,
and only a single ranging symbol is used. Both1ns and4ns
are considered forTb, with correspondingNe of 100 and
24, respectively, so that significant multipath energy can be
captured. For all the simulations the TOA estimate is taken
to be the center of the block estimate, and timing errors are
averaged over1000 different channel realizations.

Two scenarios are considered for the leading edge path
within the first energy block. The first scenario assumes that
there is no offset within the first energy block, and stored
reference has at least accurate timing with the first chip that
includes the signal. On the other hand, in the second scenario,
the first path may arrive anywhere within the first signal block.
The cumulative distribution function (CDF) of the delays
between the maximum energy sample and the leading edge
sample are compared for different transceiver types in Fig.7
for both scenarios. While choosing the peaks yields a closer

timing to the leading edge for SR for the first scenario, ED
and TR has better characteristics at low sampling rates when
no first-path synchronization is assumed.

Performances of ED, SR, and TR are compared in Figs. 8-
10, when MES and threshold comparison (TC) is employed
for CM1 and CM2. Threshold comparison chooses the first
threshold exceeding sample, where threshold is defined as
0.5

(
min(zn)+max(zn)

)
. It is seen that when MES and TC are

used, SR performs better only if synchronization to the first
path is assumed. Performance difference between CM1 and
CM2 decreases withEb/N0 in favor of CM2, and the error-
floor performances are better for CM2, which can be explained
with the fact that the distance between the maximum energy
block and leading edge block is smaller for CM2 [6].

The mean absolute errors (MAE) of the TOA estimates
for different algorithms in CM1 are presented in Fig. 11 for
ED (Tb = 4ns). The Bayesian estimation, which is obtained
using histograms of discrete bins, yields a lower bound at
high Eb/N0. The Bayesian estimate not being as good at low
Eb/N0 may be explained with small number of samples avail-
able (which may be insufficient to be modeled via the PDFs),
and the inaccuracy of the Gaussian approximation of Chi-
square statistics (whereM = 32 from simulation parameters).
Despite its computational complexity, even though it is better
than MES at most of theEb/N0 region, andit does not require
knowledge of channel statistics, GML suffers from a modeling
error. At low Eb/N0, multiple clusters of the arriving signal
are buried in noise. However, when noise variance is smaller,
GML forces an exponential fit to individual clusters, which
even increases the timing error. On the other hand, W2MESS
significantly outperforms all the other practical algorithms, and
has a reasonably low complexity, requiring power delay profile
of the channel.

V. CONCLUSION

In this paper, TOA estimation techniques for impulse ra-
dio UWB systems based on multiple hypothesis testing are
evaluated and compared for different transceiver architectures.
Simulation results show that performance of peak selection
can be enhanced by making use of channel information and
noise statistics. Also, in order for stored-reference to have
precise timing, high sampling rates are required so that the
autocorrelation peak can be accurately captured.
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