
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Replica Shuffled Iterative Decoding

Zhang, J.; Wang, Y.; Fossorier, M.; Yedidia, J.S.

TR2005-063 September 2005

Abstract

Replica shuffled versions of interactive decoders of turbo codes, low-density parity-check codes
and turbo product codes are presented. The proposed schemes converge faster than standard and
previously proposed shuffled approaches. Simulations show that the new schedules offer good
performance versus complexity/latency trade-offs.

IEEE International Symposium on Information Theory (ISIT)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2005
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Replica Shuffled Iterative Decoding

Juntan Zhang, Yige Wang, Marc Fossorier, and Jonathan S. Yedidia

TR-2005-063 February 2005

Abstract

Replica shuffled versions of iterative decoders of turbo codes, low-density parity-check
codes and turbo product codes are presented. The proposed schemes converge faster
than standard and previously proposed “shuffled” approaches. Simulations show that
the new schedules offer good performance versus complexity/latency trade-offs.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such
whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research
Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions
of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment
of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2005
201 Broadway, Cambridge, Massachusetts 02139



To appear in the Proceedings of the 2005 International Symposium on Information Theory.



Replica Shuffled Iterative Decoding
Juntan Zhang, Yige Wang and Marc Fossorier

Department of Electrical Engineering
University of Hawaii at Manoa

Honolulu, HI 96822
Email: juntan, yige, marc@spectra.eng.hawaii.edu

Jonathan S. Yedidia
Mitsubishi Electric Research Laboratories

201 Broadway, Cambridge, MA 02139
Email: yedidia@merl.com

Abstract— Replica shuffled versions of iterative decoders of
turbo codes, low-density parity-check codes and turbo product
codes are presented. The proposed schemes converge faster
than standard and previously proposed “shuffled” approaches.
Simulations show that the new schedules offer good performance
versus complexity/latency trade-offs.

I. INTRODUCTION

Iterative decoding based on belief propagation (BP) [1] has
received significant attention recently, mostly due to its near-
Shannon-limit error performance for the decoding of low-
density parity-check (LDPC) codes [2] and turbo codes [3].
Like maximum a posterior probability (MAP) decoding [4],
it is a symbol-by-symbol soft-in/soft-out decoding algorithm.
It processes the received symbols recursively to improve the
reliability of each symbol based on constraints that specify
the code. In the first iteration, the decoder only uses the
channel output, and generates soft output for each symbol.
Subsequently, the output reliability measures of the decoded
symbols at the end of each decoding iteration are used as
inputs for the next iteration. The decoding iteration process
continues until a certain stopping condition is satisfied. Then
hard decisions are made based on the output reliability mea-
sures of the decoded symbols at the last decoding iteration.
The standard BP decoder of LDPC codes often needs several
tens or hundreds of iterations for the decoding process to
converge, which is not desirable because of high decoding
delay. Furthermore, LDPC codes of interest can have large
codeword length and it can be difficult to implement the
decoding in hardware in a fully parallel way. Because of
the serial property of the BCJR algorithm, decoders of turbo
codes cause high delay as well. In [5], [6] and [7], “shuffled”
methods were presented to reduce the required number of
iterations for decoding LDPC and turbo codes, respectively.
A speedup factor of 2 for LDPC codes and the saving of
one iteration for turbo codes were reported. The aim of this
paper is to introduce a “replica shuffled” scheme which further
accelerate the decoding process for turbo codes, LDPC codes,
turbo product codes and other iterative decodable codes.

II. ITERATIVE DECODING OF TURBO CODE

A turbo code [3] encoder is constructed using a concatena-
tion of two (or more) convolutional encoders, and its decoder
consists of two (or more) soft-in/soft-out convolutional de-
coders which feed reliability information to each other. For

simplicity, we consider a turbo code that consists of two rate-
1/n systematic convolutional codes with encoders in feedback
form. Let u = (u1, u2, . . . , uK) be an information block of
length K and c = (c1, c2, . . . , cK) be the corresponding
coded sequence, where ck = (ck,1, ck,2, . . . , ck,n), for k =
1, 2, . . . , K, is the output code block at time k. Suppose
BPSK transmission over an AWGN channel, with uk and
ck,j all taking values in {+1, -1} for k = 1, 2, . . . ,K and
j = 1, 2, . . . , n. Let y = (y1,y2, . . . ,yK) be the received
sequence, where yk = (yk,1, yk,2, . . . , yk,n) is the received
block at time k. Let û = {û1, û2, . . . , ûK} denote the estimate
of u. Let sk denote the encoder state at time k. Following
[4], define: αk(s) = p(sk = s,yk

1), γk(s′, s) = p(sk =
s, yk|sk−1 = s′), βk(s) = p(yK

k+1|sk = s), where yb
a =

(ya,ya+1, . . . ,yb), and let α
(m)
k (s), γ

(m)
k (s′, s), β

(m)
k (s) be

the corresponding values computed in component decoder m,
with m = 1, 2. Let L

(i)
em(ûk) denote the extrinsic value of the

estimated information bit ûk delivered by component decoder
m at the ith iteration [8].

A. Standard serial and parallel turbo decoding

The decoding approach proposed in [3] operates in serial
mode, i.e., the component decoders take turns generating the
extrinsic values of the estimated information symbols, and
each component decoder uses the extrinsic messages delivered
by the last component decoder as the a priori values of the
information symbols. The disadvantage of this scheme is high
decoding delay. In the parallel turbo decoding algorithm [9],
all component decoders operate in parallel at any given time.
After each iteration, each component decoder delivers extrinsic
messages to other decoder(s) which use these messages as a
priori values at the next iteration.

B. Plain shuffled turbo decoding

Although the parallel turbo decoding reduces the decoding
delay of serial decoding by half, the extrinsic messages are not
taken advantage of as soon as they become available, because
the extrinsic messages are delivered to component decoders
only after each iteration is completed. The aim of the shuffled
turbo decoding is to use the more reliable extrinsic messages
at each time. Let ũ = (ũ1, ũ2, . . . , ũK) be the sequence
permuted by the interleaver corresponding to the original
information sequence u = (u1, u2, . . . , uK), according to the
mapping ũk = uπ(k), for k = 1, 2, . . . , K. We assume that k 6=



π(k),∀k. There is a unique corresponding reverse mapping
uk = ũπ−(k), for k = 1, 2, . . . ,K and k 6= π−(k), ∀k. In
shuffled turbo decoding, the two component decoders operate
simultaneously as in the parallel turbo decoding scheme, but
the messages are updated during each iteration based on π(k)
and π−(k) [7]. Correspondingly it provides a faster decoding
convergence.

C. Replica shuffled turbo decoding

In the plain shuffled turbo decoding summarized in Section
II-B, we assume all the component decoders process the
backward recursion followed by the forward recursion. Let
us refer to the two component decoders as −→

D1 and −→
D2.

Naturally another possible scheme is to operate in the reverse
order, i.e, all the component decoders process the forward
recursion followed by the backward recursion and we refer
to them as ←−D1 and ←−D2. In terms of error performance, there
is no difference between these two approaches. However, the
reliabilities of the extrinsic messages concerning a certain
information bit delivered by these two shuffled turbo decoders
are not the same. In general, the more independent information
is used, the more reliable the delivered messages become.
Therefore for the extrinsic messages delivered by component
decoder −→D1, which are denoted by −→

L
(i)

e1 (ûk), the larger k
is, the more reliable this message is. Following a similar
analysis, for the extrinsic message ←−L (i)

e1 (ûk) delivered by ←−D1,
the smaller k is, the more reliable this message is. It is natural
to expect a faster decoding convergence if these two shuffled
turbo decoders operate cooperatively instead of independently.
Because in this approach two sets of shuffled component
decoders are used to decode the same sequence of information
bits, we refer to it as replica shuffled turbo decoding. In replica
shuffled turbo decoding, two plain shuffled turbo decoders
(processing recursions in opposite directions) −→D1 , −→D2 and←−
D1 , ←−D2 operate simultaneously and exchange more reliable
extrinsic messages. We assume that the component decoders
deliver extrinsic messages synchronously, i.e., −→T 1

k = −→
T

2

k =←−
T

1

k = ←−
T

2

k, where the −→T 1

k (←−T 1

k)and −→T 2

k (←−T 2

k) denote the times
at which −→D1 (←−D1) and −→D2 (←−D2) deliver the extrinsic values
of the k-th ((K + 1− k)-th) estimated symbol of the original
information sequence u and of the interleaved sequence ũ,
respectively.

Let us first consider the forward recursion stage at the i-
th iteration of component decoder −→D1. After time −→

T
1

k−1,
the values of −→α (1)

k (s) should be updated and the values
of −→γ (1)

k (s) are needed. There are two possible cases. The
first case is k > π−(k), which means the extrinsic value
−→
L

(i)

e2 (ûk) of the information bit ûk has already been delivered
by decoder −→D2. As in plain shuffled turbo decoding, this newly
available −→L (i)

e2 (ûk) is used to compute the values −→γ (1)
k (s),

−→α (1)
k (s), and −→L (i)

e1 (ûk). The second case is k < π−(k), which

means the extrinsic value −→L (i)

e2 (ûk) of the information bit ûk

has not been delivered yet by −→
D2. Then in plain shuffled

turbo decoding, the values α
(1)
k (s) and L

(i)
e1 (ûk) are updated

based on the extrinsic messages delivered at last iteration.
In replica shuffled turbo decoding, however, there are two
further subcases. The first subcase is K + 1 − k < π−(k),
which means the extrinsic value ←−L (i)

e2 (ûk) of the information
bit ûk has already been delivered by decoder ←−D2. Then this
newly available ←−L (i)

e2 (ûk), instead of −→L (i−1)

e2 (ûk) is used to
compute the values −→γ (1)

k (s), −→α (1)
k (s), and −→

L
(i)

e1 (ûk). The
second subcase is K + 1 − k < π−(k), which means both
extrinsic messages of the information bit ûk, i.e, ←−L (i)

e2 (ûk)
and −→L (i)

e2 (ûk) are not available yet. In this subcase, the values
of −→α (1)

k (s) and −→L (i)

e1 (ûk) are updated based on the extrinsic
messages delivered at (i − 1)-th iteration. The recursions of
component decoders −→D2, ←−D1 and ←−D2 are realized based on
the same principle. After Imax iterations, the shuffled turbo
decoding algorithm outputs û = (û1, û2, . . . , ûK) as the de-
coded codeword, where ûk =sgn[(−→L (i)

e1 (ûk) +←−L (i)

e1 (ûk))/2 +
(−→L (i)

e2 (ûk) +←−
L

(i)

e2 (ûk))/2 + 4
N0

yk,1], which is different from
that in the standard turbo decoding [3] and plain shuffled
turbo decoding. It is straightforward to generalize the replica
shuffled turbo decoding to multiple turbo codes which consist
of more than two component codes. Also group of bits can
be updated periodically only to reduce information exchanges
between replicas. Based on the above descriptions with two
replicas, the total computational complexity of the replica
shuffled turbo decoding for multiple turbo codes at each
decoding iteration is about twice that of the parallel turbo
decoding.

D. Simulation results

Fig. 1 depicts the bit error performance of a turbo code
with two component codes (rate-1/3) and interleaver size
16384, with standard parallel decoding, plain shuffled and
replica shuffled decoding. We observe that, to obtain the same
error performance, the replica turbo decoding requires about
half the number of iterations of that of the standard parallel
turbo decoding. Hence latency is greatly reduced (by half if
information exchanges are ignored).

III. ITERATIVE DECODING OF LDPC CODES

Let H = [Hmn] be the parity check matrix which defines
an LDPC code. We denote the set of bits that participate in
check m by N (m) = {n : Hmn = 1} and the set of checks
in which bit n participates as M(n) = {m : Hmn = 1}.
Assume a codeword w = (w1, w2, . . . , wN ) is transmitted
over an AWGN channel with zero mean and variance N0/2
using BPSK signaling and let y = (y1, y2, . . . , yN ) be the
corresponding received sequence.

A. Standard BP for iterative decoding of LDPC codes

Based on [1], let Fn be the log-likelihood ratio (LLR) of
bit n and initially set Fn = 4

N0
yn. Let ε

(i)
mn and z

(i)
mn be the

LLR of bit n which is sent from check node m to bit node n
and sent from the bit node n to check node m, respectively.
Let z

(i)
n denote the a posteriori LLR of bit n. The standard

BP algorithm [1] is carried out as follows:



Initialization Set i = 1, maximum number of iterations to
IMax. For each m,n, set z

(0)
mn = Fn.

Step 1
(i) Horizontal Step, for 1 ≤ n ≤ N and each m ∈
M(n), process:

τ (i)
mn =

∏

n′∈N (m)\n
tanh(z(i−1)

mn′ /2) (1)

ε(i)
mn = log

1 + τ
(i)
mn

1− τ
(i)
mn

(2)

(ii) Vertical Step, for 1 ≤ n ≤ N and each m ∈
M(n), process:

z(i)
mn = Fn +

∑

m′∈M(n)\m
ε
(i)
m′n (3)

z(i)
n = Fn +

∑

m∈M(n)

ε(i)
mn (4)

Step 2 Hard decision and stopping criterion test:
(i) Create ŵ(i) = [ŵ(i)

n ] such that ŵ
(i)
n = 0 if

z
(i)
n > 0, and ŵ

(i)
n = 1 if z

(i)
n < 0.

(ii) If Hŵ(i) = 0 or IMax is reached, stop the
decoding and go to Step 3. Otherwise set
i := i + 1 and go to Step 1.

Step 3 Output ŵ(i) as the decoded codeword.

B. Plain shuffled BP for iterative decoding of LDPC codes

At the i-th iteration of the standard BP algorithm, first all
values of the check-to-bit messages are updated by using the
values of the bit-to-check messages obtained at the (i − 1)-
th iteration, i.e., each ε

(i)
mn is updated by using {z(i−1)

mn′ :
n′ ∈ N (m)\n}. Then, all values of the bit-to-check messages
are updated by using the values of the check-to-bit messages
newly obtained at the i-th iteration, i.e., each z

(i)
mn is updated

from {ε(i)
m′n : m′ ∈M(n)\m}.

We observe that certain values z
(i)
mn′ could already be

computed in (3) based on a partial computation of the values
ε
(i)
mn obtained from (2), and then could be used instead of

z
(i−1)
mn′ in (1) to compute the remaining values ε

(i)
mn. Hence Step

1 of the shuffled BP algorithm is performed as: for 1 ≤ n ≤ N
and each m ∈M(n), process the horizontal step and vertical
step jointly, with (1) modified as:

τ (i)
mn =

∏

n′∈N (m)\n

n′<n

tanh(z(i)
mn′/2)

∏

n′∈N (m)\n

n′>n

tanh(z(i−1)
mn′ /2)

Since this algorithm becomes totally serial, bits can be grouped
to maintain a sufficient level of parallelism with the same error
performance [7].

C. Replica shuffled BP decoding for LDPC codes

Plain shuffled BP decoding is a bit-based sequential ap-
proach and the method described in Section III-B is based
on a natural increasing order, i.e, belief messages concerning
bit nodes are updated according to order i = 1, 2, . . . , N .

The larger the value of i, the more independent informations
are used to update the beliefs of bit note i and the more
reliable these belief messages are. Therefore the reliability of
bit nodes increases and the error rate decreases as i increases.
Following a similar analysis, in plain shuffled BP decoding
based on a natural decreasing order, after each iteration, the
reliability of bit nodes decreases as i increases. As in replica
shuffled turbo decoding, in replica shuffled BP decoding, two
replica shuffled subdecoders based on different updating orders
operate simultaneously and cooperatively. After each iteration,
each subdecoder receives more reliable messages from and
sends more reliable messages to another subdecoder. Based on
these more reliable messages, both replica subdecoders begin
the next iteration of decoding. Let −→D and ←−D denote the replica
subdecoder with natural increasing and decreasing updating
order, respectively. Let −→ε (i)

mn and −→z i
mn be the variables

associated with −→D at iteration i. Variables associated with ←−D
are defined in a similar way. The replica shuffled BP decoding
with two replica subdecoders is carried out as followings:

Initialization Set i = 1, maximum number of iteration to
IMax. For each m,n, set −→z (0)

mn = ←−z (0)
mn = Fn.

Step 1 Each replica subdecoder process as the following
two steps simultaneously. For 0 ≤ n ≤ N − 1 and
each m ∈M(n), process

(i) Horizontal Step

−→τ (i)
mn =

∏

n′∈N (m)\n

n′<n

tanh(−→z (i)
mn′/2)

·
∏

n′∈N (m)\n

n′>n

tanh(−→z (i−1)
mn′ /2)

−→ε (i)
mn = log

1 +−→τ (i)
mn

1−−→τ (i)
mn

←−τ (i)
mn =

∏

n′∈N (m)\n

n′>n

tanh(←−z (i)
mn′/2)

·
∏

n′∈N (m)\n

n′<n

tanh(←−z (i−1)
mn′ /2)

←−ε (i)
mn = log

1 +←−τ (i)
mn

1−←−τ (i)
mn

(ii) Vertical Step
−→z (i)

mn = Fn +
∑

m′∈M(n)\m

−→ε (i)
m′n

←−z (i)
mn = Fn +

∑

m′∈M(n)\m

←−ε (i)
m′n

Step 2 Exchange of the more reliable messages. Set
−→z (i)

mn = ←−z (i)
mn for 0 ≤ n < N/2 and ←−z (i)

mn = −→z (i)
mn

for N/2 ≤ n ≤ N − 1.



Step 3 Hard decision and stopping criterion test:
(i) Create ŵ(i) = [ŵ(i)

n ] such that for 0 ≤ n <

N/2, ŵ
(i)
n = 1 if Fn +

∑
m∈M(n)

←−ε (i)
mn <

0, and ŵ
(i)
n = 0 otherwise; for N/2 < n ≤

N−1, ŵ
(i)
n = 1 if Fn+

∑
m∈M(n)

−→ε (i)
mn <

0, and ŵ
(i)
n = 0 otherwise.

(ii) If Hŵ(i) = 0 or IMax is reached, stop the
decoding and go to Step 4. Otherwise set
i := i + 1 and go to Step 1.

Step 4 Output ŵ(i) as the decoded codeword.
An alternative approach that can be used is to make the

two subdecoders exchange the more reliable messages after
updating the reliability message of each bit (or a group of
bits). We observe that this “simultaneous replica” approach
provides a faster convergence, especially for Gallager-type
LDPC codes. Thus all simulation results of LDPC codes are
based on simultaneous updating of each bit (or a group of
bits). It is also straightforward to extend the replica shuffled
BP decoding to the cases in which more than two replica
subdecoders are used. In order to decrease decoding delay
of plain shuffled BP decoding, a parallel version of shuffled
BP named group shuffled BP was developed in [7]. In a
similar way, group replica shuffled BP can also preserve the
parallelism advantage of the standard BP algorithm. It is also
clear this idea can be extended to other other grouping scheme
(e.g, [11]) and other iterative decoding algorithms, such as bit
flipping and weighted bit flipping decoding.

D. Simulation results

Fig. 2 depicts the word error rate (WER) of iterative de-
coding of a (8000, 4000)(3, 6) LDPC code, with the standard
BP, plain shuffled and group replica shuffled BP algorithm, for
G = 2, 4, 8, 16 and 8000 and with four replica subdecoders.
The maximum number of iterations for plain and group replica
shuffled BP was set to be 10. We observe that the WER
performance of replica shuffled BP decoding with four subde-
coders, Imax=10, and a group number larger or equal to four,
are approximately the same as that of the standard BP with
Imax=60. Fig. 3 depicts the WER of the standard and replica
shuffled BP decoding of the (16200, 7200) irregular LDPC
code which is constructed in a semi-random matter [12].
The variable node degree distribution is λ(x) = 0.00006x +
0.57772x2 + 0.3111x3 + 0.11111x8. The number of replica
subdecoders was four. We observe that the replica shuffled BP
with Imax=10 and G = 32 provides a similar performance as
that of the standard BP with Imax=70.

IV. ITERATIVE DECODING OF TURBO PRODUCT CODES

A two-dimension turbo product code (TPC) can be denoted
as C1

⊗
C2, where C1 and C2 are two linear block codes.

Place k1 × k2 information symbols in an array of k1 rows
and k2 columns, and then encode the k1 rows using code C2.
Afterwards, the resulting n2 columns are encoded using code
C1. Usually, we choose C1 the same as C2.

A. Conventional decoding methods of TPC

The conventional TPC decoder performs row and column
decoding in a serial fashion. A soft input soft output (SISO)
decoder, such as MAP, is used to decode each row or column.
A low complexity decoding approach is provided in [13]. It
applies the Chase algorithm iteratively on the row and column
decoding, but still in a serial fashion. In order to halve the
decoding latency, a parallel TPC decoder has been proposed
in [10]. As opposed to the conventional serial TPC decoder,
the row and column decoders in this method operate in
parallel and send each other the updated extrinsic information
immediately after a row or column has been decoded. The
simulation results reveal that this parallel decoder can reduce
decoding latency by half of that of the original decoder.

B. Replica decoding of TPC

Based on the parallel decoder, we propose a replica parallel
decoder as shown in Fig. 4, which can further reduce decoding
latency. Both row and column decoders are duplicated, but
work from opposite extremes, which means the two row
decoders process rows from the top and bottom, respectively
and the two column decoders process columns from the
left and right, respectively. Row (Column) decoders send to
both column (row) decoders immediately the latest extrinsic
matrices, [Wcol

T ] and [Wcol
B ] ([Wrow

L ] and [Wrow
R ]), after a row

(column) has been decoded.
The procedure of the replica parallel decoding is shown

in Fig. 5. The circles denote bit positions that were already
updated by other decoders. Their number is much larger than
that in the parallel decoder, which greatly benefits the decoding
because most bits have more accurate priori information. The
arrows with letters aT , bT , etc., represent the processing order
of different decoders. After both row (column) decoders finish
decoding all the rows (columns), the most reliable parts of
them are combined and the resulting extrinsic matrix for the
next iteration is transmitted to both column (row) decoders.

C. Simulation results

Fig. 6 depicts the performance of TPC (64, 57, 4)2.
The weighting factors with the iteration number are
[0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.0]. The MAP algorithm is
used to decode the two linear block codes. As shown in Fig.
6, the performance at the third iteration in the replica decoder
is better than that at the fourth iteration in the parallel decoder.

REFERENCES

[1] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

[2] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
M.I.T. Press, 1963.

[3] C. Berrou and A. Glavieux, “Near-optimum error-correcting coding and
decoding: Turbo-codes,” IEEE Trans. Commun, vol. 44, pp. 1261-1271,
Oct. 1996.

[4] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, pp.
284-287, Mar. 1974.

[5] H. Kfir and I. Kanter, “Parallel versus sequential updating for belief
propagation decoding,” submitted to Physical Review E, July 2002.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0(dB)

B
E

R

standard parallel 5 iterations
standard parallel 10 iterations
standard parallel 20 iterations
plain shuffled 5 iterations
plain shuffled 10 iterations
plain shuffled 20 iterations
replica shuffled 5 iterations
replica shuffled 10 iterations

Fig. 1. Bit error performance of 2-component turbo code with interleaver
size 16384, for standard parallel, plain shuffled and replica shuffled decodings.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0(dB)

W
E

R

Standard BP Imax=10
Standard BP Imax=60
Plain Shuffled BP Imax=10
G=2
G=4
G=8
G=16
G=8000

Fig. 2. Error performance for iterative decoding of the (8000, 4000)(3, 6)
LDPC code with group shuffled BP algorithm, for G = 1, 2, 8, 100, 8000
and at most 10 iterations.

[6] J. Zhang and M. Fossorier, “Shuffled Belief Propagation Decoding,”
Proceedings of 36th Annual Asilomar Conference on Signals, Systems
and Computers, pp. 8-15, Nov. 2002.

[7] J. Zhang and M. Fossorier, “Shuffled Belief Propagation Decoding,”
IEEE Trans. Commun., Feb. 2005.

[8] J. Hagenauer, E. Offer and L. Papke, “Iterative decoding of block and
convolutional codes,” IEEE Trans. on Inform., vol. 42, pp. 429-445,
March 1996.

[9] D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space
communications,” JPL TDA Progress Report, 71-78, May 1995.

[10] C. Argon and S. McLaughlin, “A parallel decoder for low latency
decoding of turbo product codes,” IEEE Commun. Lett., vol. 6, pp. 70-
72, Feb. 2002.

[11] E. Yeo, P. Pakzad, B. Nikolic and V. Anantharam, “High throughput
low-density parity-check decoder architectures,” Proceedings of Global
Telecommunications Conference, vol. 5, pp. 3019-3024, Nov. 2001.

[12] “Draft DVB-S2 Standard,” availible at http://www.dvb.org.
[13] R. M. Pyndiah, ”Near-optimum decoding of product codes: Block turbo

codes”, IEEE Trans. Commun., vol. 46, pp. 1003-1010, Aug. 1998.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

−4

10
−3

10
−2

10
−1

10
0

W
E

R

Eb/No(dB)

Standard BP Imax=10
Standard BP Imax=70
Replica Shuffled BP G=4, Imax=10
Replica Shuffled BP G=32, Imax=10
Replica Shuffled BP G=16200, Imax=10

Fig. 3. Error performance for iterative decoding of the (16200, 7200)
irregular LDPC code.

Fig. 4. Replica parallel decoder (one iteration)

n -1

0

1

2

n -1

0

1

2

n -1

0 1 2

aT bT

aL bL

n -10 1 2

Column decoder
(process from the left)

Column decoder
(process from the right)

Row decoder
(process from the top)

Row decoder
(process from the bottom)

aL bL
aR bR

aR bR

aB bB

aB

bB

aT

bT

Fig. 5. Procedure of replica parallel decoder

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

SNR = Eb/No (dB)

It=1 Replica
It=2 Replica
It=3 Replica
It=4 Replica
It=1 Parallel
It=2 Parallel
It=3 Parallel
It=4 Parallel

Fig. 6. Performance of TPC (64, 57, 4)2 with parallel and replica parallel
decoders.


	Title Page
	Title Page
	page 2


	Replica Shuffled Iterative Decoding
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


