
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Exact Calculation of Expected Waiting
Times for Group Elevator Control

Daniel Nikovski, Matthew Brand

TR2004-148 December 2004

Abstract

We present an efficient algorithm for exact calculation and minimization of expected waiting
times of all passengers using a bank of elevators. The dynamics of the system are represented
by a discrete-state Markov chain embedded in the continuous phase-space diagram of a moving
elevator car. The chain is evaluated efficiently using dynamic programming to compute measures
of future system performance such as expected waiting time, properly averaged over all possible
future scenarios. An elevator group controller based on this method significantly outperforms
benchmark algorithms, and although slower than them, is completely within the computational
capabilities of currently existing elevator bank controllers.

IEEE Transactions on Automatic Control

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2004
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Final version submitted June 2004.



1

Exact Calculation of Expected Waiting Times for
Group Elevator Control

Daniel Nikovski, Matthew Brand

Abstract— We present an efficient algorithm for exact
calculation and minimization of expected waiting times of
all passengers using a bank of elevators. The dynamics
of the system are represented by a discrete-state Markov
chain embedded in the continuous phase-space diagram of
a moving elevator car. The chain is evaluated efficiently us-
ing dynamic programming to compute measures of future
system performance such as expected waiting time, prop-
erly averaged over all possible future scenarios. An eleva-
tor group controller based on this method significantly out-
performs benchmark algorithms, and although slower than
them, is completely within the computational capabilities of
currently existing elevator bank controllers.

Keywords— optimal control, group elevator scheduling,
dynamic programming, Markov chains

Final submission to IEEE Transactions on Automatic
Control regenerated July 14, 2005

I. INTRODUCTION

Group elevator scheduling is a hard optimal control
problem which has been researched extensively due
to its high practical significance [1]. The problem is
simply stated: New passengers arrive at a bank of el-
evators at random times and floors, making hall-calls
to signal for rides up or down. A ride destination is
unknown until the passenger enters the car and makes
a car call to request a stop. The controller must assign
a car to each hall call in a way that optimizes overall
system performance.

The usual performance criterion to be optimized
is the average waiting time (AWT) of all passengers
in the system, i.e., the time period from the moment
a passenger arrives until the moment this passenger
boards some car, averaged over many arrivals. Min-
imizing it is an extremely complicated problem, and
one of the most important reasons for that is the un-
certainty in destination floors — in order to com-
pute the expected AWT of all passengers, the system
must consider all possible ways of picking up these
passengers by the respective cars assigned to them,
which ways in turn depend on the unknown destina-
tion floors of passengers. Since the unknown des-
tination of each passenger potentially influences the

waiting time of all other passengers assigned to the
same car, the scheduler must consider a potentially
exponential number of possible paths of that car. Fur-
thermore, future arrivals of new passengers will occur
at unknown future times and floors, introducing addi-
tional waits to existing passengers that are very hard
to quantify.

In order to make the problem tractable, existing
algorithms simplify the problem significantly. The
Empty-the-System Algorithm (ESA), closely related
to the ETA algorithm, [1], [2], ignores all future ar-
rivals, and selects assignments that would serve the
existing passengers (thus emptying the system) in the
shortest possible time. When, inevitably, a new pas-
senger does arrive in the future, the current schedule
can either be extended with the car that will be as-
signed to serve that passenger, or the whole schedule
can be recomputed. The former procedure is the only
option in Japan, where assignments are expected to
be announced immediately after receiving new hall
calls and cannot be revoked later, while the latter pro-
cedure is more typical of western countries, where
pre-announcements are not expected, and the sched-
uler has more latitude to balance the schedule as long
as possible.

Both scheduling modes, though, are reduced to the
problem of estimating the expected AWT for a given
schedule. As pointed out above, one of the most sig-
nificant difficulties in computing AWT is the uncer-
tainty in destination floors and the resulting combi-
natorial explosion of possible paths to be considered.
The usual simplification employed to deal with this
difficulty in ESA/ETA is to pretend that the destina-
tion floor of each passenger is known, which entails a
single deterministic path for all cars serving their re-
spective passengers. Computing the AWT in this case
can be done in linear time. Different heuristics are
possible: the ESA algorithm assumes that the desti-
nation floor of all passengers going down is the lobby,
while ETA assumes that the destination floor of pas-
sengers lies halfway between their boarding floor and



2

the end of the building in their desired direction of
movement. Clearly, these assumptions are not very
reasonable, and have the effect that waiting times are
computed on a single path that is not even very likely.
In the next section, we demonstrate that such a sim-
plification is not necessary, and describe an algorithm
that can compute the proper expectation of AWT over
all possible paths of an elevator car.

II. DYNAMIC PROGRAMMING FOR EXACT
COMPUTATION OF EXPECTED AVERAGE

WAITING TIMES

A. Optimization Criterion
Whenever a new hall call is generated at a par-

ticular floor in a particular direction, the algorithm
minimizes the total residual waiting time of all cur-
rently waiting passengers, including the new arrival.
All such passengers except the new one have already
been assigned to a car; under the immediate assign-
ment policy, their assignments will never be reconsid-
ered. If the elevator group has a total of Nc cars, let
W−

i , i ∈ [1, Nc] denote the expected waiting time of
all passengers currently assigned to car i, excluding
the newly arrived passenger(s) signalling the current
hall call, and similarly, let W +

i , i ∈ [1, Nc] denote
the expected waiting time of all passengers currently
assigned to car i, including the newly arrived passen-
ger(s). We can then compute the expected waiting
time Wi associated with assigning the new call to car
i as

Wi = W+

i +
Nc∑

j=1

i6=j

W−
j , i ∈ [1, Nc].

The car c chosen by the controller for assignment
is the one, which minimizes the total expected RWT:
c = arg mini Wi. Note that since the number of wait-
ing passengers is constant at the time of a particular
decision step, such an assignment would also mini-
mize the average expected RWT of current passen-
gers, which is computed as the total RWT of all pas-
sengers divided by their number.

If W− .
=

∑Nc

i=1 W−
i , the waiting times for each

possible assignment can be expressed as Wi = W+

i −

W−
i + W−. Since W− is the same for each i, the as-

signment which minimizes ∆Wi = W+

i −W−
i is also

the one which minimizes Wi. As a result, the optimal
assignment can be found by computing W +

i and W−
i

for each car, and choosing the car for which their re-
spective difference is minimal.

Computing W +

i and W−
i for a particular car i is

essentially the same problem. For W−
i we compute

the expected RWT given the state of the system and
all currently scheduled elevator-to-passenger assign-
ments. For W + we temporarily add the new pas-
senger to elevator i’s itinerary and recompute the ex-
pected RWT.

If Np passengers are assigned to a car in a building
of Nf floors, each of the passengers has O(Nf) pos-
sible destinations, and the total complexity of such
an implementation would be O(N

Np

f )—prohibitively
high. It is possible, however, to reduce the complex-
ity of computation to O(NfNp) by casting the prob-
lem into a dynamic programming framework. We
will call the corresponding algorithm ESA-DP (ESA
by Dynamic Programming).

Dynamic programming is commonly employed in
stochastic control algorithms where cost estimates on
segments of a system’s path can be reused in multi-
ple paths [3]. In order to solve a problem this way,
one must typically discretize the state and identify
branch points where system paths converge and then
diverge again, so that the costs on a segment between
two such points can be computed only once, and then
reused for the computation of costs along all paths
which include this segment.

B. Trajectory Structure of an Elevator Car

Such branching points can readily be identified on
the phase-space diagram of an elevator car shown in
Figure 1. Like any moving mechanical system, a car
travelling in an elevator shaft has a phase-space dia-
gram which describes the possible coordinates (x, ẋ)
for the car’s position along the shaft x and its veloc-
ity ẋ. When the car is moving under constant accel-
eration without friction, its trajectory consists of seg-
ments which are parts of parabolae, and more compli-
cated equations of motion result in slightly different
shapes of the traversed trajectories. However, even
when the equations of motion of a car are nonlinear
(e.g. include gear backlash) and/or include position
derivatives higher than acceleration (e.g. jerk with a
specified magnitude and duration), the motion of the
car is very predictable and can be realized only on a
small number of trajectories. Accordingly, these tra-
jectories branch only on a small number of points, de-
noted by circles in Figure 1, which always correspond



3

to the last possible location at which a car should start
decelerating if it is to stop at a particular floor in its
direction of motion. A particular path of a car dur-
ing its round-trip always consists of a finite number
of such segments, whose endpoints are branching or
resting points. Consequently, if the waiting time on
each such segment can be computed, it can be reused
for the computation along many paths that include
that segment.

x
.

x0
[floors]

Fig. 1. A schematic illustration of the phase space of a single
car moving upwards in a shaft of a building with eight floors,
not all of which have equal height. All branching points are
denoted by circles.

Reusing the costs on all individual segments can be
achieved by embedding a discrete Markov chain into
the original system of elevator movement, which in it-
self operates in continuous time and space. A Markov
chain consists formally of a finite number of states
Si, i ∈ [1, Ns], an immediate cost Cij of the transi-
tion between each pair of states Si and Sj, a matrix
Pij of the probabilities of transition between states Si

and Sj, and a distribution π(Si) which specifies the
probability that the system would start in state Si [3].

In order for the chain to be Markovian, it should
obey the Markov property: The probability Pij of
transitioning to state Sj should depend only on the
starting state Si, and not on the trajectory of the sys-
tem before it entered Si. If we define the states of the
system to correspond only to the branching points in
the phase-space diagram, the resulting chain would
not be Markovian, because the probability of each
branch depends on how many people are currently in-
side the car, and that number depends on how many
of all waiting people have already been transported to
their destinations in previous stops of the car.

Consequently, the number of people in the car must
be included in the state of the Markov chain as well.
However, the state needs only encode the number of
currently waiting people who will board the car af-
ter the moment of assignment decision. This number
does not include people who are already in the car
at that time and have signalled their destinations by

pressing car buttons. These “in-car” passengers in-
fluence the motion of the car too, by imposing con-
straints on its motion in the form of obligatory car
stops, but these constraints are deterministic and have
no impact on transition probabilities. These probabil-
ities depend only on the uncertainty in the destina-
tions of the passengers who are yet to board the car.

Accordingly, a state Si of the Markov chain is de-
scribed by the four-tuple (f, d, v, n), where f is the
floor of the car, d is its current direction, v is its cur-
rent velocity, and n is the number of newly boarded
passengers, precisely, waiting passengers who enter
the car in the course of evaluating the Markov chain.
The variables d and n are discrete, and have prede-
fined ranges: d can take only two values, “up” and
“down”, while n ranges from 0 to the maximum num-
ber of passengers assigned to a car, travelling in either
direction. (This maximum number is reached, for ex-
ample, when all passengers intend to get off the car at
the last floor in the current direction of motion.)

The variables f and v, however, are essentially
continuous, and in order to make the problem
tractable, they have to be discretized. An inspec-
tion of the phase-space diagram suggests a straight-
forward discretization scheme for the velocity v —
it can be seen that while accelerating from a partic-
ular floor, the car reaches branching points along its
trajectory only at a small number of velocities (four
in Figure 1, including the quiescent state, when the
velocity is zero). The reason for this is the limit on
the maximum speed of any real elevator car. De-
pending on the inter-floor distance, maximum speed,
and acceleration of the motors, this number of dis-
tinct velocities at branching points can be lower (for
longer inter-floor distances, lower maximum speed,
and greater acceleration), or higher (for shorter inter-
floor distances, higher maximum speed, and lower
acceleration). For a particular building and the ele-
vator bank installed in it, this number is fixed and can
be found easily, so henceforth we would assume it is
known and will denote it by Nv. Hence, the variable
v would only take Nv discrete values, ranging from
0 (rest) to Nv − 1 (maximum speed). Note that the
same value of v can correspond to different physical
velocities, depending on which floor the car stopped
at last. Another interpretation of this variable is the
number of branching points a car has encountering
since its last stop.

There are several ways to discretize the floor vari-



4

able f , the obvious one being to round the physi-
cal location of the car to the nearest floor. While
such a discretization is possible, the resulting value
for the floor is not conveniently related to the particu-
lar branching point represented by the Markov chain.
A much more convenient discretization scheme is to
choose for a value of f the floor at which the car
will stop if it starts decelerating at that branching
point. The advantage of such a discretization scheme
becomes apparent, if we organize the states of the
Markov chain in a regular structure, commonly called
trellis in dynamic programming algorithms.

C. Structure and Parameters of the Embedded
Markov Chain

Figure 2 shows a dynamic programming trellis for
one particular Markov chain which corresponds to the
situation when a car is moving down and is about to
reach the branching point at which it will stop at floor
13, if it decelerates. It has already been scheduled
to pick up a passenger at floor 7, and the controller
is considering whether this car should also pick up a
new hall call down, originating at floor 11. The em-
bedded Markov chain has 84 states which are placed
in a trellis matrix of 7 rows and 12 columns. States in
a row represent branching points that share the prop-
erty that the car will stop at the same floor, if it starts
decelerating immediately. Note that this applies to
branching points reached when the car is moving in
a particular direction — when it is moving in the op-
posite direction, the branching points generally have
different positions in the phase space diagram. The
corresponding row of the trellis is labelled with the
floor at which the car can stop, as well as the direc-
tion of the movement of the car when it reaches the
branching points. Since there is a separate row for
each floor and direction, the trellis can have at most
2Nf rows.

The states in each row of the trellis are organized
into Nv groups (4 in Figure 2), corresponding to the
Nv possible velocity values at branching points (or-
dered so that the leftmost column correspond to zero
velocity, and the rightmost column correspond to the
maximum velocity of the car). Within a group, the
states correspond to the number of people who are
currently in the car and who were waiting in the halls
at the beginning of the trellis (ranging from 0 to 2 in
Figure 2). This organization of states constitutes the
trellis of the dynamic programming problem. It can

������������

�����
��� 	

�
�
�
��� 	

�����
��� 	

��� 	
�����

	�� 


	�� �

��� 	
���

	
� 


	�� �

��� 	��� 	
���

	�� 


	�� �

��� 	��� 	��� 	
���

	
� 
	�� ���� 	��� 	��� 	

Fig. 2. Simplified trellis structure for the embedded Markov
chain of a single descending car. Rows signify floors;
columns signify the number of recently boarded passengers;
column groups signify elevator speeds. The empty descend-
ing car is about to reach the branching point for possible a
stop at floor 13. It has been assigned hall calls at floors 7
and 11, each of which may increase the passenger load by
one.

be seen that not all of the states in the trellis can be
visited by the car, because its motion is constrained
by the current hall and car calls.

If we assume that the floor-value component f of
the four-tuple used to describe a branching point is
that of the floor where the car will stop, if it starts de-
celerating at this branching point, the first row of the
trellis always contains the first branching point which
the car will reach. Similarly, under this convention,
the last row of the trellis always corresponds to the
floor where the last passenger along the round-trip of
the car will be picked up. This arrangement of rows
conveniently spans the horizon which the dynamic
programming algorithm has to consider, because the
last moment which has to be considered is always
the moment the last waiting passenger is picked up—
after that, the residual waiting time of passengers as-
signed to the current car becomes zero.

The total cost Cij incurred on a segment, measured
as the waiting time of passengers who have not been
picked up yet, can be expressed simply as the product
of the number of these passengers and the duration of
the segment.

The last remaining components of the embedded
Markov chain are the transition probabilities Pij of
transitioning between each pair of states Si and Sj.
A large number of these transitions are determinis-
tic and are always taken with probability one. Such
are the transitions resulting from existing car and hall
calls. For example, the initial trajectory of the car
from floor 13 to floor 11 in Figure 2 is determinis-



5

tic — the empty car accelerates until it reaches the
branching point for stopping at floor 11, where it
stops to pick up the first hall-call passenger waiting
there. After that, the car accelerates again until it
reaches the branching floor for stopping at floor 10,
from which it can take many different paths, depend-
ing on the unknown destination of that passenger.

At the branching point of floor 10, the passenger
might be getting off at one of the next 10 floors, and
hence the probability that this would be exactly floor
10 is 0.1. With probability 0.9, the passenger would
not get off at floor 10, and the car will continue accel-
erating until the branching point for floor 9, with one
passenger still on board, as reflected in the diagram
of the Markov chain.

In the general case, when the car has k floors to
go with n passengers on board, and we assume that
a passenger would get off at any of the k floors with
equal probability (1/k), we can find the probability
that x people would want to get off at the next floor by
using the formula for the binomial probability func-
tion:

Pr(x, n, k) =
n!

(n − x)!x!

(k − 1)n−x

kn
(1)

Therefore n−x people would remain on board the
car with probability Pr(x, n, k). A similar treatment
will give Pr(x, n, k) when the destination probabil-
ities are nonuniform but independent of where each
passenger gets on. The number of remaining people
n−x specifies which state within a group the Markov
chain would enter with probability Pr(x, n, k), but
we still have to find which group (velocity setting)
this state would be in. This velocity setting can be de-
termined by inspecting the existing car and hall calls,
as well as the number x of people getting off. If x > 0
or there is a mandatory stop at the next floor due to a
car or hall call, the velocity v at the next state would
be zero; only when x = 0 (nobody gets off the car at
the next floor) and there are no car or hall calls for this
floor, the car would accelerate (or maintain maximum
speed, if it has already reached it).

D. Building and Evaluating the Markov Chain
The Markov chain can be constructed easily by

propagating forward in time the set of possible states,
starting with the initial state. For each possible state
in turn, the possible successor states are computed
and marked as such, and the probabilities of transi-

tions to these state are recorded. Evaluation of the
Markov chain proceeds in the opposite order, starting
from the terminal state(s), and updating the cost-to-go
(RWT) of each possible state, until the initial state is
reached. The implementational details of these two
algorithms, as well as an experimental comparison
with conventional control, are given in [4]. Note that
this procedure computes the expected RWT of a car’s
passengers only from the moment the car reaches the
first state of the trellis. In general, however, when
a hall call occurs, the car would be somewhere be-
tween two branching points, In order to find the total
expected residual waiting time of a car’s passengers
from the moment a hall call occurs, the result has to
be increased by the time it would take for the car to
reach the first branching point, multiplied by the total
number of passengers currently assigned to that car,
in both directions.

REFERENCES
[1] Gang Bao, Christos G. Cassandras, Theodore E. Djaferis, Asif D.

Gandhi, and Douglas P. Looze, “Elevator dispatchers for down-
peak traffic,” Technical report, University of Massachusetts, De-
partment of Electrical and Computer Engineering, Amherst, Mas-
sachusetts, 1994.

[2] G.C. Barney, Elevator Traffic Handbook, Spon Press, London,
2003.

[3] Dimitri P. Bertsekas, Dynamic Programming and Optimal Control,
Athena Scientific, Belmont, Massachusetts, 2000, Volumes 1 and
2.

[4] Daniel Nikovski and Matthew Brand, “Decision-theoretic
group elevator scheduling,” Technical Report TR2003-61,
Mitsubishi Electric Research Laboratories, Cambridge, Mas-
sachusetts, http://www.merl.com/papers/TR2003-61, 2003.

Daniel Nikovski received the PhD degree in
robotics from Carnegie Mellon University in 2002,
and is a research scientist at Mitsubishi Electric Re-
search Laboratories in Cambridge, MA.

Matthew Brand received the PhD degree in com-
puter science from Northwestern University in 1994,
and is a senior research scientist at Mitsubishi Elec-
tric Research Laboratories in Cambridge, MA.


	Title Page
	Title Page
	page 2


	Exact Calculation of Expected Waiting Times for Group Elevator Control
	page 2
	page 3
	page 4
	page 5
	page 6


