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Abstract

The fact that people are embodied places powerful constraints on their motion.
By leveraging these constraints, we can build systems to perceive human motion
that are fast and robust. More importantly, by understanding how these con-
straint systems relate to one another, and to the perceptual process itself, we can
make progress toward building systems that interpret, not just capture, human
motion.
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The fact that people are embodied places powerful constraints on their mo-
tion. By leveraging these constraints, we can build systems to perceive human
motion that are fast and robust. More importantly, by understanding how these
constraint systems relate to one another, and to the perceptual process itself,
we can make progress toward building systems that interpret, not just capture,
human motion.

1 Overview

The laws of physics, the construction of the human skeleton, the layout of the
musculature, the various levels of organization within the nervous system, the
context of a task, and even forces of habits and culture all conspire to limit the
possible configurations and trajectories of the human form. The kinematic con-
straints of the skeleton are instantaneous. They are always true (we hope), and
serve to bound the domain of feasible estimates. The rest of these constraints
exist to some degree in the temporal domain: given past observations, they tell
us something about future observations.

These phenomenon cover a wide range of the time scales. The laws of physics
apply in a continuous, instantaneous fashion. The subtle limits of muscle action
may play out on time scales of milliseconds. Temporal structure due to the
nervous system may range from tenths of seconds to minutes. Depending on
the definition of a task, the task context may change over fractions of a minute
or fractions of an hour. The subtle influence of affect might change over hours
or even days. Habits and cultural norms develop over a lifetime.

A truly complete model of human embodiment would encompass all of these
things. Unfortunately most of these phenomenon are currently beyond the scope
of current modeling techniques. Neuroscience is only beginning to explain the
impact of the structures of the peripheral nervous system on motion. Models of
higher processes such as affect, task and culture are even farther away.

The things that we can model explicitly include the instantaneous geometric
constraints (blobs, perspective, and kinematics) and the dynamic constraints
of Newton’s Laws. Blobs represent a visual constraint. We are composed of
parts, and those parts appear in images as connected, visually coherent regions.
Perspective constraints model the relationship between multiple views of the
human body caused by our 3-D nature and the perspective projection of the
world onto a CCD by a lens inside a camera. Kinematic constraints are the
skeletal or connective constraints between the parts of the body: the length of
a limb, the mechanics of a joint, and so on. The instantaneous configuration of
the body is the pose. The kinematic constraints define the region of valid poses.

Newton’s Laws represent a set of dynamic constraints: constraints in time.
The assumption of bounded forces in the system implies bounded accelerations.
Bounded accelerations in turn imply smoothness of the pose trajectory in time.
Since the articulated frame of the body is complex and involves revolute joints,
this isn’t simply a smoothness constraint. It is a shaping function that is related
to the global mass matrix which is a non-linear, time-varying function of the
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pose.
The rest of the constraint layers (neuromuscular, contextual, and psycho-

logical) can currently only be modeled statistically through observation. Fortu-
nately the recursive estimation framework discussed below offers a natural way
to factor out these influences and treat them separately from the geometry and
physics. Unfortunately, further factorization of the signal is a poorly under-
stood problem. Since the signals occupy unknown, likely overlapping frequency
bands, this leads to hard problems in system identification. As a result, we will
treat these separate influences as a single, unified influence. This is obviously a
simplification, but it is currently a necessary simplification.

1.1 Recursive Filters

The geometric constraints discussed above are useful for regularizing pose esti-
mation, but the dynamic constraints provide something even more important:
since they represent constraints in time, they allow prediction into the future.
This is important because for human motion observed video rates, physics is a
powerful predictor.

With a model of the observation process, predictions of 3-D body pose in the
near future can be turned into predictions of observations. These predictions
can be compared to actual observations when they are made. Measuring the
discrepancy between prediction and observation provides useful information for
updating the estimates of the pose. These differences are called innovations
because they represent the aspects of the observations that were unpredicted by
the model.

This link between model and observation is the powerful idea behind all re-
cursive filters, including the well known Kalman filters. Kalman filters are the
optimal recursive filter formulation for the class of problems with linear dynam-
ics, linear mappings between state and observation, and white, Gaussian process
noise. Extended Kalman filters generalize the basic formulation to include the
case of analytically linearizable observation and dynamic models.

Recursive filters are able to cope with data in real time thanks to a Marko-
vian assumption that the state of the system contains all the information needed
to predict its behavior. For example, the state of a rigid physical object would
include both the position and velocity. There is no need for the filter to simulta-
neously consider all the observations ever made of the subject to determine it’s
state. The update of the state estimate only requires combining the innovation
with the dynamic, observation, and noise models.

The complete recursive loop includes measurement, comparison of predicted
observation to actual observation, corresponding update of state estimate, pre-
diction of future state estimate, and rendering of the next predicted observation.
This is the basic flow of information in a Kalman filter, and applies equally well
to recursive filters in general.

For the case of observing the human body, this general framework is com-
plicated by the fact that the human body is a 3-D articulated system and the
observation process is significantly non-trivial. Video images of the human body
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are high-dimensional signals and the mapping between body pose and image ob-
servation involves perspective projection. These unique challenges go beyond
the original design goals of the Kalman and extended Kalman filters and they
make the task of building systems to observe human motion quite difficult.

1.2 Feedback for Early Vision

Most computer vision systems are modularized to help reduce software complex-
ity, manage bandwidth, and improve performance. Often, low-level modules,
comprised of filter-based pattern recognition pipelines, provide features to mid-
level modules that then use statistical or logical techniques to infer meaning.
The mid-level processes are made tractable by the dimensionality reduction ac-
complished by the low-level modules, but these improvements can incur a cost
in robustness. These systems are often brittle: they fail when the assumptions
in a low-level filter are violated. Once a low-level module fails, the information
is lost. Even in the case where the mid-level module can employ complex models
to detect the failure, there is no way to recover the lost information if there is no
downward flow of information that can be used to avert the failure. The system
is forced to rely on complex heuristics to attempt approximate repair[44].

Dynamic constraints enable the prediction of observations in the near future.
These predictions, with the proper representation, can be employed by low-
level perceptual processes to resolve ambiguities. This results in a more robust
system, by enabling complex, high-level models to inform the earliest stages of
processing. It is possible to retain the advantages of modularity in a closed-loop
system through carefully designed interfaces.

For example, the Dyna system[52] measures the 2-D locations of body parts
in the image plane using an image-region tracker. The system then estimates
3-D body part locations from stereo pairs of 2-D observations. Finally the full
body pose is estimated from these 3-D observations using a 3-D, non-linear
model of the kinematics and dynamics of the human body. This system is well
modularized and fast, but but would be very brittle if it relied on information
only flowing from low-level processes to high-level interpretation. Instead, pre-
dictions from the dynamic model are incorporated as prior information into the
probabilistic blob tracker. The tracker is the first process to be applied to the
pixels, so given this feedback, there is no part of the system that is bottom-up.
Even this lowest level pixel-classification process incorporates high-level model
influence in the form of state predictions represented as prior probabilities for
pixel classification.

This influence is more significant than simply modifying or bounding a search
routine. Our classifier actually produces different results in the presence of
feedback: results that reflect global classification decisions instead of locally
optimal decisions that may be misleading or incomplete in the global context.
This modification is made possible due to the statistical nature of our blob
tracker. Prior information generated by the body model transforms the bottom-
up, maximum likelihood blob tracker into a maximum a posteriori classifier.
Thanks to the probabilistic nature of the blob tracker, it is possible to the hide
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the details of the high-level processes from the low-level processes, and thereby
retain the speed and simplicity of the pixel classification.

1.3 Expression

An appropriate model of embodiment allows a perceptual system to separate
the necessary aspects of motion from the purposeful aspects of motion. The
necessary aspects are a result of physics and are predictable. The purpose-
ful aspects are the direct result of a person attempting to express themselves
through the motion of their bodies. Understanding embodiment is the key to
perceiving expressive motion.

Human-computer interfaces make measurements of a human and use those
measurements to give them control over some abstract domain. The sophistica-
tion of these measurements range from the trivial keyclick to the most advanced
perceptual interface system. Once the measurements are acquired the system
usually attempts to extract some set of features as the first step in a pattern
recognition system that will convert those measurements into whatever domain
of control the application provides. Those features are usually chosen for math-
ematical convenience or to satisfy an ad hoc notion of invariance.

The innovations process discussed above is a fertile source of features that
are directly related to the embodiment of the human. When neuromuscular,
contextual or psychological influences affect the motion of the body, these ef-
fects will appear in the innovations process if they are not explicitly modeled.
This provides direct access for learning mechanisms to these influences with-
out compounding them with the effects of physics, kinematics, imaging, or any
other process that can be explicitly modeled by the system. This tight cou-
pling between appearance, motion and behavior is a powerful implication of
this framework.

2 Theoretic Foundations

This section will expand on the ideas presented in Section 1, while linking them
to their roots in stochastic estimation theory.

The fundamental idea presented in Section 1 is that perception is improved
when it is coupled with expectations about the process being observed: specifi-
cally a model with the ability to make qualified predictions into the future given
past observations. A logical framework for creating and employing this kind of
model in a perceptual system can be found in the control and estimation litera-
ture. Since the human body is a physical system, it shares many properties with
the general class of dynamic systems. It is instructive to approach the task of
understanding human motion in the same way that an engineer might approach
the task of observing any dynamic system.

One possible simplified block diagram of a human is illustrated in Figure 1.
The passive, physical reality of the human body is represented by the Plant. The
propagation of the system forward in time is governed by the laws of physics
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and is influenced by signals, u, from Control. On the right, noisy observations,
y, can be made of the Plant. On the left, high level goals, v, are supplied to
the Controller.

θ

Controlv u Plant
x

y

x

Figure 1: A systems view of the human body.

The observations are a function of the system state according to some mea-
surement process, h(·). In our case this measurement process corresponds to the
imaging process of a camera. As such, it is a non-linear, incomplete transform:
cameras do not directly measure velocity, they are subject to occlusion, and
they project 3-D information into 2-D observations:

yt+1 = h(xt+1) + θt (1)

The measurement process is also noisy. θt represents additive noise in the
observation. The θt are assumed to be samples from a white, Gaussian, zero-
mean process with covariance Θ:

θt ← N (0,Θ) (2)

The state vector, x, completely defines the configuration of the system in
phase-space. The Plant propagates the state forward in time according to the
system constraints. In the case of the human body this includes the non-linear
constraints of kinematics as well as the constraints of physics. The Plant also
reacts to the influences of the control signal. For the human body these influ-
ences come as muscle forces. It is assumed that the Plant can be represented
by an unknown, non-linear function f(·, ·):

xt+1 = f(xt,ut) (3)

The control signals are physical signals, for example, muscle activations that
result in forces being applied to the body. The Controller obviously represents
a significant amount of complexity: muscle activity, the properties of motor
nerves, and all the complex motor control structures from the spinal cord up
into the cerebellum. The Controller has access to the state of the Plant, by the
process of proprioception:

ut = c(vt,xt) (4)

The high-level goals, v, are very high-level processes. These signals represent
the place where intentionality enters into the system. If we are building a system
to interact with a human, then we get the observations, y, and what we’re really
interested in is the intentionality encoded in v. Everything else is just in the
way.
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2.1 A Classic Observer

~
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Figure 2: Classic observer architecture

A classic observer for such a system takes the form illustrated in Figure 2.
This is the underlying structure of recursive estimators, including the well known
Kalman and extended Kalman filters.

The Observer is an analytical model of the physical Plant:

xt+1 = Φtxt + Btut + Ltξt (5)

The unknown, non-linear update equation, f(·, ·) from Equation 3, is modeled as
the sum of two non-linear functions: Φ(·) and B(·). Φ(·) propagates the current
state forward in time, and B(·) maps control signals into state influences. Φt

and Bt from Equation 5 are linearizations of Φ(·) and B(·) respectively, at the
current operating point. The right-hand term, (Ltξt), represents the effect of
noise introduced by modeling errors on the state update. The ξt are assumed to
be samples from a white, Gaussian, zero-mean process with covariance Ξ that
is independent of the observation noise from Equation 2:

ξt ← N (0,Ξ) (6)

The model of the measurement process is also linearized. Ht is a linearization
of the non-linear measurement function h(·):

yt+1 = Htxt+1 + θt (7)

Linearizations, such as those invoked to form Φt and Ht, are performed by
computing the Jacobian matrix. The Jacobian of a multivariate function of x
such as Φ(·) is computed as the matrix of partial derivatives at the operating
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point xt with respect to the components of x:

Φt = ∇xxΦ|x=xt
=



∂Φ1
∂x1

∣∣∣
x=xt

∂Φ1
∂x2

∣∣∣
x=xt

· · · ∂Φ1
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∣∣∣
x=xt

∂Φ2
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∣∣∣
x=xt

. . .
...

...
. . .

∂Φm

∂x1

∣∣∣
x=xt

· · · · · · ∂Φm

∂xn

∣∣∣
x=xt


This operation is often non-trivial.

Estimation begins from a prior estimate of state: x̂0|0. Given the current
estimate of system state, x̂t|t, and the update Equation 5, it is possible to
compute a prediction for the state at t + 1:

x̂t+1|t = Φtx̂t|t + Btut (8)

Notice that ξt falls out since:

E[ξt] = E [N (0,Ξ)] = 0 (9)

Combining this state prediction with the measurement model provides a
prediction of the next measurement:

ŷt+1|t = Htx̂t+1|t (10)

Again, θt drops out since:

E[θt] = E [N (0,Θ)] = 0 (11)

Given this prediction it is possible to compute the residual error between
the prediction and the actual new observation yt+1:

ỹt+1 = νt+1 = yt+1 − ŷt+1|t (12)

This residual, called the innovation, is the information about the actual state of
the system that the filter was unable to predict, plus noise. A weighted version
of this residual is used to revise the new state estimate for time t + 1 to reflect
the new information in the most recent observation:

x̂t+1|t+1 = x̂t+1|t + Kt+1ỹt+1 (13)

In the case of the Kalman filter, the weighting matrix is the well-known
Kalman gain matrix. It is computed from the estimated error covariance of the
state prediction, the measurement models, and the measurement noise covari-
ance, Θ:

Kt+1 = Σt+1|tHT
t

[
HtΣt+1|tHT

t + Θt+1

]−1
(14)

The estimated error covariance of the state prediction is initialized with the
estimated error covariance of the prior state estimate, Σ0|0. As part of the
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state prediction process, the error covariance of the state prediction can be
computed from the error covariance of the previous state estimate using the
dynamic update rule from Equation 5:

Σt+1|t = ΦtΣt|tΦ
T
t + LtΞtLT

t (15)

Notice that, since ut is assumed to be deterministic, it does not contribute to
this equation.

Incorporating new information from measurements into the system reduces
the error covariance of the state estimate: after a new observation, the state
estimate should be closer to the true state:

Σt+1|t+1 = [I−Kt+1Ht]Σt+1|t (16)

Notice, in Equation 5, that that classic Observer assumes access to the con-
trol signal u. For people, remember that the control signals represent muscle
activations that are unavailable to a non-invasive Observer. That means that
an observer of the human body is in the slightly different situation illustrated
in Figure 3.

~

θ

?

u y

ŷ

Plant

^
Observer

-

y
x

x

K

û

Figure 3: An Observer of the human body can’t access u

2.2 A Lack of Control

Simply ignoring the (Btu) term in Equation 5 results in poor estimation per-
formance. Specifically, the update Equation 13 expands to:

x̂t+1|t+1 = x̂t+1|t + Kt+1(yt+1 −Ht(Φtx̂t|t + Btut)) (17)

In the absence of access to the control signal u, the update equation becomes:

˜̂xt+1|t+1 = x̂t+1|t + Kt+1(yt+1 −Ht(Φtx̂t|t + Bt0)) (18)
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The error ε between the ideal update and the update without access to the
control signal is then:

ε =
∣∣∣x̂t+1|t+1 − ˜̂xt+1|t+1

∣∣∣ (19)

= Kt+1HtBtut (20)

Treating the control signal, ut, as a random variable, we compute the control
mean and covariance matrix:

ū = E[ut] (21)
U = E[(ut − ū)(ut − ū)T ] (22)

If the control covariance matrix is small relative to the model and observation
noise, by which we mean:

‖U‖ << ‖Ξt‖ (23)
‖U‖ << ‖Θt‖ (24)

then the standard recursive filtering algorithms should be robust enough to
generate good state and covariance estimates. However, as U grows, so will the
error ε. For large enough U it will not be possible to hide these errors within
the assumptions of white, Gaussian process noise, and filter performance will
significantly degrade [3].

It should be obvious that we expect U to be large: if u had only negligible
impact on the evolution of x, then the human body wouldn’t be very effective.
The motion of the human body is influenced to a large degree by the actions of
muscles and the control structures driving those muscles. This situation will be
illustrated in Section 3.

2.3 Estimation of Control

It is not possible to measure ut directly. It is inadvisable to ignore the effects
of active control, as shown above. An alternative is to estimate ut+1|t. This
alternative is illustrated in Figure 4: assuming that there is some amount of
structure in u, the function g(·, ·) uses x̂ and ỹ to estimate û.

The measurement residual, ỹt+1 is a good place to find information about
ut for several reasons. Normally, in a steady-state observer, the measurement
residual is expected to be zero-mean, white noise, so E[ỹt] = 0. From Equa-
tion 20 we see that without knowledge of ut, ỹt+1 will be biased:

E[ỹt+1] = HtBtut (25)

This bias is caused by the faulty state prediction resulting in a biased mea-
surement prediction. Not only will ỹt+1 not be zero-mean, it will also not be
white. Time correlation in the control signal will introduce time correlation
in the residual signal due to the slow moving bias. Specific examples of such
structure in the residuals will be shown in Section 3.
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û

Figure 4: An observer that estimates û as well as x̂

Learning the bias and temporal structure of the measurement residuals pro-
vides a mechanism for learning models of u. Good estimates of u will lead to
better estimates of x which are useful for a wide variety of applications includ-
ing motion capture for animation, direct manipulation of virtual environments,
video compositing, diagnosis of motor disorders, and others. However, if we re-
main focused on the intentionality represented by v on the far left of Figure 1,
then this improved tracking data is only of tangential interest as a means to
compute v̂.

The neuroscience literature[43] is our only source of good information about
the control structures of the human body, and therefore the structure of v.
This literature seems to indicate that the body is controlled by the setting of
goal states. The muscles change activation in response to these goals, and the
limb passively evolves to the new equilibrium point. The time scale of these
mechanisms seem to be on the scale of hundreds of milliseconds.

Given this apparent structure of v, we expect that the internal structure of
g(·, ·) should contain states that represent switches between control paradigms,
and thus switches in the high-level intentionality encoded in v. Section 3 dis-
cusses possible representations for g(·, ·) and Section 4 discusses results obtained
in controlled contexts (where the richness of v is kept manageable by the intro-
duction of a constrained context).

2.4 Images as Observations

There is one final theoretic complication with this formulation of an observer
for human motion. Recursive filtering matured under the assumption that the
measurement process produced low-dimensional signals under a measurement
model that could be readily linearized: such as the case of a radar tracking a
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ballistic missile. Images of the human body taken from a video stream do not
fit this assumption: they are high dimensional signals and the imaging process
is complex.

One solution, borrowed from the pattern recognition literature, is to place
a deterministic filter between the raw images and the Observer. The measure-
ments available to the Observer are then low-dimensional features generated by
this filter [47]. This situation is illustrated in Figure 5.

Features

θ

~

Images

^g(x,y)~

u Plant
x

ŷ
^

Observer
-

y
x

K

û
y

Figure 5: Feature Extraction between image observations and the Observer.

One fatal flaw in this framework is the assumption that it is possible to cre-
ate a stationary filter process that is robust and able to provide all the relevant
information from the image as a low dimensional signal for the Observer. This
assumption essentially presumes a pre-existing solution to the perception prob-
lem. A sub-optimal filter will succumb to the problem of perceptual aliasing
under a certain set of circumstances specific to that filter. In these situations
the measurements supplied to the Observer will be flawed. The filter will have
failed to capture critical information in the low-dimensional measurements. It is
unlikely that catastrophic failures in feature extraction will produce errors that
fit within the assumed white, Gaussian, zero-mean measurement noise model.
Worse, the situation in Figure 5 provides no way for the predictions available
in the Observer to avert these failures. This problem will be demonstrated in
more detail in Section 5.

A more robust solution is illustrated in Figure 6. A steerable feature extrac-
tion process takes advantage of observation predictions to resolve ambiguities.
It is even possible to compute an estimate of the observation prediction error co-
variance, (HtΣt+1|tHT

t ) and weight the influence of these predictions according
to their certainty. Since this process takes advantage of the available predictions

MERL-TR2004-108 August 2004



Compare
~

+

θ
Images

ŷ
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Figure 6: The Observer driving a steerable feature extractor.

it does not suffer from the problems described above, because prior knowledge
of ambiguities enables the filter to anticipate catastrophic failures. This allows
the filter to more accurately identify failures and correctly propagate uncer-
tainty, or even change modes to better handle the ambiguity. A fast, robust
implementation of such a system is described in detail in Section 3.

2.5 Summary

So we see that exploring the task of observing the human from the vantage of
classical control theory provides interesting insights. The powerful recursive link
between model and observation will allow us to build robust and fast systems.
Lack of access to control signals represent a major difference between observing
built systems and observing biological systems. Finally that there is a possibility
of leveraging the framework to help in the estimation of these unavailable but
important signals.

For the case of observing the human body, this general framework is com-
plicated by the fact that the human body is a 3-D articulated system and the
observation process is significantly non-trivial. Video images of the human body
are extremely high-dimensional signals and the mapping between body pose and
image observation involves perspective projection. These unique challenges go
beyond the original design goals of the Kalman and extended Kalman filters and
they make the task of building systems to observe human motion quite difficult.
The details involved in extending the basic framework to this more complex
domain are the subject of the next section.
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2-D Vision 2-D Vision

Behavior

Dynamics

Things
Model of Model of

Passive Physics
Model of

Active Control

Control3-D Estimates

Predictions

Projective Model

Figure 7: The Recursive Filtering framework. Predictive feedback from the
3-D dynamic model becomes prior knowledge for the 2-D observations process.
Predicted control allows for more accurate predictive feedback.

3 An Implementation

This section attempts to make the theoretical findings of the previous section
more concrete by describing a real implementation. The Dyna architecture
is a real-time, recursive, 3-D person tracking system. The system is driven
by 2-D blob features observed in two or more cameras [4, 53]. These features
are then probabilistically integrated into a dynamic 3-D skeletal model, which
in turn drives the 2-D feature tracking process by setting appropriate prior
probabilities.

The feedback between 3-D model and 2-D image features is in the form of
a recursive filter, as described in the previous section. One important aspect of
the Dyna architecture is that the filter directly couples raw pixel measurements
with an articulated dynamic model of the human skeleton. In this aspect the
system is similar to that of Dickmanns in automobile control [15], and results
show that the system realizes similar efficiency and stability advantages in the
human motion perception domain.

This framework can be applied beyond passive physics by incorporating var-
ious patterns of control (which we call ‘behaviors’) that are learned from ob-
serving humans while they perform various tasks. Behaviors are defined as
those aspects of the motion that cannot be explained solely by passive physics
or the process of image production. In the untrained tracker these manifest
as significant structures in the innovations process (the sequence of prediction
errors). Learned models of this structure can be used to recognize and predict
this purposeful aspect of human motion.

The human body is a complex dynamic system, whose visual features are
time-varying, noisy signals. Accurately tracking the state of such a system
requires use of a recursive estimation framework, as illustrated in figure 7. The
framework consists of several modules. Section 3.1 details the module labeled
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“2-D Vision”. The module labeled “Projective Model” is described in [4] and
is summarized. The formulation of our 3-D skeletal physics model, “Dynamics”
in the diagram, is explained in Section 3.2, including an explanation of how
to drive that model from the observed measurements. The generation of prior
information for the “2-D Vision” module from the model state estimated in the
“Dynamics” module is covered in Section 3.3. Section 3.4 explains the behavior
system and its intimate relationship with the physical model.

3.1 The Observation Model

Our system tracks regions that are visually similar, and spatially coherent:
blobs. We can represent these 2-D regions by their low-order statistics. This
compact model allows fast, robust classification of image regions.

Given a pair of calibrated cameras, pairs of 2-D blob parameters are used
to estimate the parameters of 3-D blobs that exist behind these observations.
Since the stereo estimation is occurring at the blob level instead of the pixel
level, it is fast and robust.

This section describes these low-level observation and estimation processes
in detail.

3.1.1 Blob Observations

Clusters of 2-D points, (i, j), have 2-D spatial means and covariance matrices,
which we shall denote µs and Σs. The blob spatial statistics are described
in terms of these second-order properties. For computational convenience we
will interpret this as a Gaussian model. The Gaussian interpretation is not
terribly significant, because we also keep a pixel-by-pixel support map showing
the actual blob occupancy in the video frame [51].

The visual appearance of the pixels, (y, u, v), that comprise a blob can also
be modeled by second order statistics in color space: the 3-D mean, µc and
covariance, Σc. As with the spatial statistics, these chromatic statistics are
interpreted as the parameters of a Gaussian distribution in color space. We
chose the YUV representation of color due to its ready availability from video
digitization hardware and the fact that in the presence of white luminants it
confines much of the effect of shadows to the single coordinate y [51].

Given these two sets of statistics describing the blob, the overall blob de-
scription becomes the concatenation (ijyuv), where the overall mean is:

µ =
[

µs

µc

]
and the overall covariance is:

Σ =
[

Σs Λsc

Λcs Σc

]
This framework allows for the concatenation of additional statistics that may be
available from image analysis, such as texture or motion components. Figure 8
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Figure 8: A person interpreted as a set of blobs.

shows a person represented as a set of blobs. Spatial mean and covariance
is represented by the iso-probability contour ellipse shape. The color mean is
represented by the color of the blob. The color covariance is not represented in
this illustration.

3.1.2 Frame Interpretation

To compute Pr(O|µk,Σk), the probability that a given pixel observation, O, is
a member of a given blob, k, we employ the Gaussian assumption to arrive at
the formula:

Pr(O|µk,Σk) =
exp(− 1

2 (O− µk)T Σ−1
k (O− µk))

(2π)
m
2 |Σk|

1
2

(26)

where O is the concatenation of the pixel spatial and chromatic characteristics.
Since the color and spatial statistics are assumed to be independent, the cross-
covariance Λsc goes to zero, and the computation of the above value can proceed
in a separable fashion [51].

For a frame of video data, the pixel at (i, j) can be classified by selecting,
from the k blobs being tracked, that blob which best predicts the observed pixel:

Γij = arg max
k

[Pr(Oij |µk,Σk)] (27)

where Γij is the labeling of pixel (i, j). Due to the connected nature of people,
it is possible to increase efficiency by growing out from initial position estimates
to the outer edge of the figure. This allows the algorithm to only touch the
pixels that represent the person and those nearby [51].
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3.1.3 Model Update

Once the pixels are labeled by Γ, blob statistics can be re-estimated from the
image data. For each class k, the pixels marked as members of the class are
used to estimate the new model mean µk:

µ̂k = E[O] (28)

and the second-order statistics become the estimate of the model’s covariance
matrix Σk,

Σ̂k = E[(O − µk)(O − µk)T ] (29)

3.1.4 A Compact Model

These updated blob statistics represent a low-dimensional, object-based descrip-
tion of the video frame. The position of the blob is specified by the two param-
eters of the distribution mean vector µs: i and j. The spatial extent of each
blob is represented by the three free parameters in the covariance matrix Σs. A
natural interpretation of these parameters can be obtained by performing the
eigenvalue decomposition of Σs:

Σs

 | |
L1 L2

| |

 =

 | |
L1 L2

| |

[
λ1 0
0 λ2

]
(30)

Without loss of generality, λ1 ≥ λ2, and ‖L1‖ = ‖L2‖ = 1. With those
constraints, λ1 and λ2 represent the length of the semi-major and semi-minor
axes of the iso-probability contour ellipse defined by Σs. The vectors L1 and L2

specify the direction of these axes. Since they are perpendicular, they can be
specified by a single parameter, say ω, the rotation of the semi-major axis away
from the x axis. Thus we can represent the model {µsΣs} with five parameters:

{i, j, λ1, λ2, ω}

Furthermore, these parameters have the convenient physical interpretation of
representing the center, length, width, and orientation of an ellipse in the image
plane, as shown in Figure 9.

Since the typical blob is supported by tens to hundreds of pixels, it is possible
to robustly estimate these five parameters from the available data. The result
is a stable, compact, object-level representation of the image region explained
by the blob.

3.1.5 Recovery of a Three Dimensional Model

These 2-D features are the input to the 3-D blob estimation framework used by
Azarbayejani and Pentland [4]. This framework relates the 2-D distribution of
pixel values to a tracked object’s 3-D position and orientation.

Inside the larger recursive framework, this estimation is carried out by an
embedded extended Kalman filter. It is the structure from motion estimation
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Figure 9: The hand as an iso-probability ellipse.

framework developed by Azarbayejani to estimate 3-D geometry from images.
As an extended Kalman filter, it is itself a recursive, nonlinear, probabilistic
estimation framework. Estimation of 3-D parameters from calibrated sets of
2-D parameters is computationally very efficient, requiring only a small fraction
of computational power as compared to the segmentation algorithms described
above[5]. The reader should not be confused by the embedding of one recursive
framework inside another: for the larger context this module may be considered
an opaque filter.

The same estimation machinery used to recover these 3-D blobs can also be
used to quickly and automatically calibrate pairs of cameras from blob obser-
vation data[4].

After this estimation process, the 3-D blob has nine parameters:

{x, y, z, l1, l2, l3, w1, w2, w3}

As above, these parameters represent the position of the center of the blob, the
length of the fundamental axes defined by an iso-probability contour, and the
rotation of these axes away from some reference frame. Figure 10 shows the
result of this estimation process.

3.2 Modeling Dynamics

There is a wide variety of ways to model physical systems. The model needs to
include parameters that describe the links that compose the system, as well as
information about the hard constraints that connect these links to one another.
A model that only includes this information is called a kinematic model, and
can only describe the static states of a system. The state vector of a kinematic
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Figure 10: The hand as a 3-D blobject.

model consists of the model state, x, and the model parameters, p, where the
parameters, p are the unchanging qualities of the system (the length or mass of
a given link, for example).

A system in motion is more completely modeled when the dynamics of the
system are modeled as well. A dynamic model describes the state evolution of
the system over time. In a dynamic model the state vector includes velocity as
well as position: x, ẋ, and the model parameters, p. The state evolves according
to Newton’s First Law:

ẍ = W ·X (31)

where X is the vector of external forces applied to the system, and W is the
inverse of the system mass matrix. The mass matrix describes the distribution
of mass in the system.

3.2.1 Hard Constraints

Hard constraints represent absolute limitations imposed on the system. One
example is the kinematic constraint of a skeletal joint. The model follows
the virtual work formulation of Witkin[50]. The Witkin formulation has sev-
eral advantages over reduced dimensionality solutions such as that described by
Featherstone[16]: the constraints can be modified at run-time, and the modular-
ity inherent in the mathematics drastically simplifies the implementation. The
one significant disadvantage, which will be addressed below, is computational
efficiency.

In a virtual work constraint formulation, all the links in a model have full
range of unconstrained motion. Hard kinematic constraints on the system are
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Constraint
Line of

X

Object

(X+C)

C

Figure 11: The 2-D object is constrained to move on the indicated line. An
external force, X, is applied to the object. The constraint force, C, keeps the
object from accelerating away from the constraint.

enforced by a special set of forces C:

ẍ = W · (X + C) (32)

The constraints are specified as mathematical relationships between objects that
are defined to be zero when the constraint is satisfied. The constraint forces
C, are chosen to insure that the constraints stay satisfied. In Figure 11 the
constraint would be expressed as the distance between the line and the center
of the object.

The constraints are functions of model state and time: c(x, t). When a
constraint is satisfied then c = 0. If a constraint is to remain satisfied, then
the constraint velocity must remain zero, ċ = 0, and the constraint must not
accelerate away from a valid state: c̈ = 0 or the system would soon be in
an invalid state. The constraint forces from Equation 32 and Figure 11 keep
the system from accelerating away from constraint satisfaction. The road to
understanding these forces begins by differentiating c:

ċ =
∂

∂x
c(x, t) =

∂c
∂x

ẋ +
∂c
∂t

(33)

and again:

c̈ =
∂c
∂x

ẍ +
∂ċ
∂x

ẋ +
∂2c
∂t2

(34)

Combining with Equation 32 and setting c̈ = 0 yields a relationship between
the model state, the applied external forces, and the constraint Jacobian, where
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Constraint
Line of

X

C

Object

(X+C)

Figure 12: No work is performed if the constraint force lies in the null space
compliment of the constraint Jacobian.

the constraint restitution force C is the only unknown:

∂c
∂x

W · (X + C) +
∂ċ
∂x

ẋ +
∂2c
∂t2

= 0 (35)

The force in Figure 11 satisfies the relationship in Equation 35, as do many
other possible vectors. Equation 35 is an under-determined system since the
dimensionality of c will always be less than the dimensionality of x, or the
system would be fully constrained and wouldn’t move at all. For example, in
Figure 11, c is the distance between the center of the object and the line, a
one dimensional value, while x is two dimensional, three if the object is allowed
rotational freedom in the plane.

One problem with that choice of C in Figure 11 is that it will add energy
to the system. Equation 35 only specifies that the force exactly counteract the
component of X that is in violation of the constraints. Since constraints that
add energy to the models will lead to instability, an additional requirement that
the force C do no work on the system is employed, where work would be Cẋ.
If C is always applied perpendicular to any direction of motion allowed by the
constraint then this will be satisfied. In the example case of the object on the
line, this means that C must be perpendicular to the line of constraint, as shown
in Figure 12.

More generally, the valid displacements for the system are described by the
null space of the constraint Jacobian:

∂c
∂x

dx = 0 (36)
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since valid displacements are required to leave c = 0. The disallowed displace-
ments are ones that do change c:

dx = λ
∂c
∂x

(37)

So, to do no work, the constraint force C is required to lie in the same subspace:

C = λ
∂c
∂x

(38)

Combining that equation with Equation 35 results in a linear system of equations
with only the one unknown, λ:

−

[
∂c
∂x

W
∂c
∂x

T
]

λ =
∂c
∂x

WX +
∂ċ
∂x

ẋ +
∂2c
∂t2

(39)

This equation can be rewritten to emphasize its linear nature. J is the constraint
Jacobian, ρ is a known constant vector, and λ is the vector of unknown Lagrange
multipliers:

−JWJT λ = ρ (40)

To obtain C, λ is substituted back into Equation 38. Many fast, stable methods
exist for solving equations of this form.

All the components of Equation 39 that relate directly to the constraints
are linearizations, so they must be recomputed at each integration step. This
provides the opportunity to create and delete constraints at run-time simply by
modifying the calculation of the constraint Jacobian.

Modularization Constraints are written as mathematical relationships be-
tween points in space. Often these points are located at some arbitrary loca-
tion in the local coordinate space of some object. Implementing constraints
to understand each type of object, possibly having different internal represen-
tations for state, would make the constraints unnecessarily complex. Witkin
suggests inserting an abstraction layer between objects and constraints, called
connectors[50]. Thus c for a constraint between two objects becomes:

c(x) = f(a(x1),b(x2)) (41)

The constraint Jacobian can then be decomposed by the chain rule:

∂c
∂x

=
∂c
∂a

∂a
∂x1

+
∂c
∂b

∂b
∂x2

(42)

The constraint module can then compute ∂c
∂a and ∂c

∂b without regard to the
underlying implementation while the connectors are responsible for calculating
∂a
∂x . The constraint velocity Jacobian can be computed in the same way;

∂ċ
∂x

=
∂ċ
∂a

∂a
∂x1

+
∂ċ
∂ȧ

∂ȧ
∂x1

+
∂ċ
∂b

∂b
∂x2

+
∂ċ

∂ḃ

∂ḃ
∂x2

(43)
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Figure 13: The constraint system is made up of software modules that coop-
erate to construct Equation 39. Connectors are an abstraction that allows the
Constraints to be more general, and hence more reusable.

Figure 13 shows how this information moves through the system. Each block
represents a different software module. This abstraction is very powerful: in
the system the same constraint code implements pin joints in 2-D models and
ball joints in 3-D models. Because constraints involving rotational motion are
somewhat more complex, the system differentiates between connectors without
orientation, called Points, and connectors with orientation, called Handles.

Multiple Objects and Constraints Systems with only a single constraint
are rather limiting. Multiple objects and constraints fit easily into the frame-
work. For multiple objects, the state vector x becomes the concatenation of all
the individual object state vectors. So in a 3-D model where every object has 6
degrees of freedom, with 5 objects the state vector would have dimensionality
30.

The mass matrix is similarly the concatenation of the individual mass ma-
trices. Assuming static geometry for each object, the individual mass matrix is
constant in the object local coordinate system. This mass matrix is transformed
to global coordinates and added as a block to the global mass matrix. Since
the global mass matrix is block diagonal, the inverse mass matrix is simply the
concatenation of the individually inverted mass matrices, and so doesn’t take
an inordinate amount of time to compute.

Objects are enumerated with the order that they contribute to the global
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c1

c2

c3

c4

o1 o2 o3 o4 o5

= δc
δqo1

c2c4 c3 c1

o4o5 o2 o3

− λ = ρ

λ =− ρ

Figure 14: Top: the individual constraint Jacobians each contribute one block
per object that they affect to the global constraint Jacobian. Middle: each
object also contributes to the block-diagonal inverse mass matrix from Equa-
tion 40. Bottom: Sparsely connected systems result in a block-sparse linear
system.
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state vector. Constraints are similarly enumerated. A constraint between two
objects contributes two blocks to the constraint Jacobian. The constraints ap-
pear on the row according to the constraint’s enumeration and the columns
associated with the constrained objects. The structure of the constraint Jaco-
bian is illustrated in Figure 14 for a model of the upper body with five links:
torso, left upper arm, left lower arm, right upper arm, and right lower arm. The
other values in Equation 39 are constructed in a similar fashion.

The global inverse mass matrix is block diagonal and the global constraint
Jacobian is block sparse. Both are large. Solving Equation 39 for λ requires
sparse matrix methods to be accomplished efficiently. Sparse matrix methods
were used to construct JWJT . An implementation of Linear Biconjugate Gra-
dient Descent for sparse matrices was used to solve the resulting linear system.
The algorithms were taken from Numerical Recipes[39]. These improvements
made the constraint system tractable on contemporary hardware. The rest of
the matrix manipulations are handled with a basic C++ matrix library.

Discretization Error The constraints of Equation 39 are only true instan-
taneously. When the equations are solved at discrete time steps then errors
are introduced and the system drifts away from the manifold of valid states. A
restoring force is used to keep the system from accumulating errors over time:

ẍ = W · (X + C + F) (44)

Where F is determined by the relationship:

F = αc
∂c
∂x

+ βċ
∂c
∂x

(45)

This applies a restoring force in the constrained direction that brings the sys-
tem back toward the nearest valid state and a damping force that reduces illegal
velocity. The parameters α and β are fixed. In practice the selection of these
parameters has very little impact on model stability since deviations from con-
straints remain small. A typical value for α is 1000N

m and a typical value for β

is 4Ns
m .

Distributed Integration Once the global forces are projected back into the
allowable subspace and corrected for discretization error, all further computa-
tion is partitioned among the individual objects. This avoids computing the
very large global version of Equation 32. This is possible since the inverse mass
matrix W is block diagonal, so once the global value for C is determined, Equa-
tion 32 breaks down into a set of independent systems. This distributed force
application and integration also provides the opportunity for objects to trans-
form the applied forces to the local frame and to deal with forces and torques
separately. This simplifies the implementation of the dynamics subsystem sig-
nificantly, since each link is treated as a free six degree of freedom body.
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3.2.2 Soft Constraints

Some constraints are probabilistic in nature. Noisy image measurements are
a constraint of this sort, they influence the dynamic model but do not impose
hard constraints on its behavior. As a result, the absolute constraint satisfaction
described in the previous section is not appropriate.

Soft constraints are more appropriately expressed as a potential field acting
on the dynamic system. The addition of a potential field function to model a
probability density function pushes the model toward the most likely value. In
general a soft constraint might be any function:

Xsoft = fsoft(S,x, ẋ,p) (46)

where S is some parameterization over the family of potential fields specified by
f(·).

The simplest function is the constant potential. Gravity is well-modeled by
a constant field over the scales of the model. So the potential field is simply:

Xsoft = mg (47)

where g is acceleration due to gravity, and m is the mass of the link affected by
Xsoft.

A soft constraint that attracts a body part to a specific location is somewhat
more complex:

Xsoft = k(x0 − x) (48)

where x0 is the desired position and k is a constant multiplier that affect the
“softness” of the constraint. Care must be taken when choosing k to avoid
introducing instabilities into the model. Values of k that are too large start to
turn the soft constraint into something more like a hard constraint. In this case
the constraint would be better modeled by the techniques described above.

It is also possible to construct anisotropic constraints

Xsoft =
(x− x0)
‖(x− x0)‖

(x− x0)K−1(x− x0) (49)

where K is a shaping matrix that determines the weighting of various directions.
This allows soft constraints to have stronger influence in a particular direction.
This is useful for modelling the influence of the blob observations discussed
above, or any other regular, non-isotropic force field.

Note that functions may be arbitrarily complex. A good example is a con-
troller of the form described in Section 3.4. Despite their complexity, the dy-
namics engine may represent them as a time-varying potential field. The forces
applied by the controller simply become another force affecting the dynamic
evolution of the model. The neuroscience literature supports this model[43].

3.2.3 Observation Influence

The 3-D observations described in Section 3.1 supply constraints on the under-
lying 3-D human model. Due to their statistical nature, observations are easily
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modeled as soft constraints. Observations are integrated into the dynamic evo-
lution of the system by describing them with potential fields, as discussed in
Section 3.2.2. These potential fields apply forces to the body model, causing it
evolve over time toward the observations. The strength of these fields is related
to the Kalman gain in a classic Kalman filter.

3.3 The Inverse Observation Model

In the open-loop system, the vision system uses a Maximum Likelihood frame-
work to label individual pixels in the scene (Equation 27). To close the loop,
we need to incorporate information from the 3-D model. This means generating
2-D statistical models from the 3-D body model that can be utilized by the
vision system to improve its decisions.

The current state of the model (xt, ẋt) specifies the best estimate of the
configuration of the body in model space given past observations. The first step
in predicting future observations is to propagate the state forward according
to the dynamic constraints described above. The external forces acting on the
system can be assumed to be constant for the period of forward prediction (33ms
in the case of video rate observations), or can be predicted forward in time by
behavior models as described below in Section 3.4.

Once a best estimate of the future configuration of the system, xt+∆, has
been computed, the next step is to generate a set of hypothetical 3-D observa-
tions that we would expect to see given that configuration. This involves gener-
ating distributions that represent 3-D ellipsoids that fit the observable portions
of the model links. These distributions are transformed into the camera refer-
ence frame as described in Section 3.1.5. In this frame they are described as in
Section 3.1 by either their second order statistics:

{µ◦k,Σ◦
k}

or, by their free parameters:

{x, y, z, l1, l2, l3, w1, w2, w3}

The process of identifying the observable portions of these links is discussed in
Section 3.2.3.

To be used as a prior for the classification decision in Equation 27, these 3-D
distributions must be rendered into 2-D image coordinates using perspective
projection. These projected distribution will be described by their second order
statistics:

{µ?
k,Σ?

k}

or alternatively by the free parameters:

{i, j, λ1, λ2, ω}

The computation of µ?
k from µ◦k is a straightforward application of the for-

ward projective camera model. The parameters x, y, z map into the parameters
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Figure 15: Projecting a 3-D blob into a 2-D image plane.

i, j by perspective projection:

µ?
k =

[
i
j

]
=

[
x
y

]
1

1 + z
(50)

The true perspective projection of a 3-D Gaussian distribution over <3 is
not a Gaussian distribution over the image coordinates <2. It is necessary to
employ an approximation to perspective projection that will yield a Gaussian
distribution in image coordinates to obtain a value for Σ?

k

Orthographic projection of a Gaussian distribution does result in a Gaussian
distribution. This process involves integrating over the Gaussian in the direction
of projection. Orthographic projection of the 3-D prior onto a XY plane passing
through the mean is thus equivalent to taking the marginal of a zero-mean
Gaussian distribution:

N
(
0,

[
σx λxy

λyx σy

])
=

∫ ∞

−∞
N

0,

 σx λxy λxz

λyx σy λyz

λzx λzy σz

 ∂z (51)

Orthographic projection does not account for the scaling effect of perspec-
tive projection, so simply using orthographic projection would result in priors
with significantly exaggerated covariances. A solution is to use the scaled or-
thographic approximation to perspective projection. Scaled orthographic pro-
jection uses perspective projection to map an intermediate 2-D orthographic
projection into the virtual image plane. Since the plane of orthographic pro-
jection is parallel to the virtual image plane, this operation is equivalent to a
scale. Scaling a Gaussian distribution retains the Gaussian nature, so we have
the approximation we need. As illustrated in Figure 16, by placing the plane
of orthographic projection at z, we can compute the 2-D blob covariance prior,
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Figure 16: Scaled-Orthographic projection approximation for Σ?
k

Σ?
k, from the 3-D covariance Σ◦

k:

Σ?
k =

[
σi λij

λji σj

]
=

[ 1
1+z 0
0 1

1+z

] [
σx λxy

λyx σy

] [ 1
1+z 0
0 1

1+z

]
(52)

The result of this process is a prior distribution on image observations in the
next frame:

Pr(Oij |µ?
k,Σ?

k) (53)

Integrating this information into the 2-D statistical decision framework of Equa-
tion 27 results in a Maximum A Posteriori decision rule for pixel classification:

Γij = arg max
k

[
Pr(Oij |µk,Σk)α · Pr(Oij |µ?

k,Σ?
k)1−α

]
(54)

where α is the weighting parameter that indicates the importance of the prior
information:

0 ≤ α ≤ 1 (55)

3.4 A Model for Control

Observations of the human body reveal an interplay between the passive evo-
lution of a physical system (the human body) and the influences of an active,
complex controller (the nervous system). Section 3.2 explains how, with a bit of
work, it is possible to model the physical aspects of the system. However, it is
very difficult to explicitly model the human nervous and muscular systems, so
the approach of using observed data to estimate probability distributions over
control space is very appealing.

3.4.1 A Model for Control

Kalman filtering includes the concept of an innovations process. This is the
difference between the actual observation and the predicted observation trans-
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Figure 17: Modeling tracking data of circular hand motion. Passive physics
alone leaves significant structure in the innovations process. Top Left: Smooth-
ing the innovations reveals unexplained structure. Top Right: Plotting the
Innovations along the path makes the purposeful aspect of the action clear.
Bottom: In this example, using a learned control model to improve predic-
tions leaves only white process noise in the innovations process. The smoothed
innovations stay near zero.

formed by the Kalman gain:

νt = Kt(yt −HtΦtx̂t−1) (56)

The innovations process ν is the sequence of information in the observations
that was not adequately predicted by the model. If we have a sufficient model
of the observed dynamic process, and white, zero-mean Gaussian noise is added
to the system, either in observation or in the real dynamic system itself, then
the innovations process will be white. Inadequate models will cause correlations
in the innovations process.

Since purposeful human motion is not well modeled by passive physics, we
should expect significant structure in the innovations process.

A simple example is helpful for illustrating this idea. If we track the hand
moving in a circular motion, then we have a sequence of observations of hand
position. This sequence is the result of a physical thing being measured by a
noisy observation process. For this simple example we making the assumption
that the hand moves according to a linear, constant velocity dynamic model.
Given that assumption, it is possible to estimate the true state of the hand,
and predict future states and observations. If this model is sufficient, then the
errors in the predictions should be solely due to the noise in the system.

The upper plots in Figure 17 show that model is not sufficient. Smoothing
ν reveals this significant structure (top left). Plotting the innovations along
the path of observations makes the relationship between the observations and
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the innovations clear: there is some un-modeled process acting to keep the
hand moving in a circular motion (top right). This un-modeled process is the
purposeful control signal that being applied to the hand by the muscles.

In this example, there is one active, cyclo-stationary control behavior, and
its relationship to the state of the physical system is straightforward. There
is a one-to-one mapping between the state and the phase offset into the cyclic
control, and a one-to-one mapping between the offset and the control to be
applied. If we use the smoothed innovations as our model and assume a linear
control model of identity, then the linear prediction becomes:

x̂t = Φtx̂t−1 + Iut−1 (57)

where ut−1 is the control signal applied to the system. The lower plots in Fig-
ure 17 show the result of modeling the hand motion with a model of passive
physics and a model of the active control. The smoothed innovations are basi-
cally zero: there is no part of the signal that deviates from our model except
for the observation noise.

In this simple, linear example the system state, and thus the innovations,
are represented the same coordinate system as the observations. With more
complex dynamic and observations models, such as described in Section 3.2,
they could be represented in any arbitrary system, including spaces related to
observation space in non-linear ways, for example as joint angles.

The next section examines a more powerful form of model for control.

3.4.2 Multiple Behavior Models

Human behavior, in all but the simplest tasks, is not as simple as a single dy-
namic model. The next most complex model of human behavior is to have
several alternative models of the person’s dynamics, one for each class of re-
sponse. Then at each instant we can make observations of the person’s state,
decide which model applies, and then use that model for estimation. This is
known as the multiple model or generalized likelihood approach, and produces
a generalized maximum likelihood estimate of the current and future values of
the state variables [49]. Moreover, the cost of the Kalman filter calculations is
sufficiently small to make the approach quite practical.

Intuitively, this solution breaks the person’s overall behavior down into sev-
eral “prototypical” behaviors. For instance, we might have dynamic models
corresponding to a relaxed state, a very stiff state, and so forth. We then clas-
sify the behavior by determining which model best fits the observations. This
is similar to the multiple model approach of Friedmann, and Isard[18, 24].

Since the innovations process is the part of the observation data that is un-
explained by the dynamic model, the behavior model that explains the largest
portion of the observations is, of course, the model most likely to be correct.
Thus, at each time step, we calculate the probability Pr(i) of the m-dimensional
observations Yk given the ith model and choose the model with the largest
probability. This model is then used to estimate the current value of the state
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variables, to predict their future values, and to choose among alternative re-
sponses.

3.4.3 Hidden Markov Models of Control

Since human motion evolves over time, in a complex way, it is advantageous to
explicitly model temporal dependence and internal states in the control process.
A Hidden Markov Model (HMM) is one way to do this, and has been shown to
perform quite well recognizing human motion[46].

The probability that the model is in a certain state, Sj , given a sequence of
observations, O1,O2, . . . ,ON , is defined recursively. For two observations, the
density associated with the state after the second observation, q2, being Sj is:

Pr(O1,O2,q2 = Sj) =

[
N∑

i=1

πibi(O1)aij

]
bj(O2) (58)

where πi is the prior probability of being in state i, and bi(O) is the probability
of making the observation O while in state i. This is the Forward algorithm for
HMM models.

Estimation of the control signal proceeds by identifying the most likely state
given the current observation and the last state, and then using the observation
density of that state as described above. If the models are trained relative to a
passive-physics model, then likely it will be necessary to run a passive-physics
tracker to supply the innovations that will be used by the models to select the
control paradigm for a second tracker. We restrict the observation densities to
be either a Gaussian or a mixture of Gaussians. For behaviors that are labeled
there are well understood techniques for estimating the parameters of the HMM
from data[40].

3.4.4 Behavior Alphabet Auto-Selection

Classic HMM techniques require the training data to be labeled prior to pa-
rameter estimation. Since we don’t necessarily know how to choose a gesture
alphabet a priori, we cannot perform this pre-segmentation. We would prefer
to automatically discover the optimal alphabet for gestures from gesture data.
The Cogno architecture performs this automatic clustering[12].

Unfortunately, the phrase “optimal” is ill-defined for this task. In the ab-
sence of a task to evaluate the performance of the model, there is an arbitrary
trade-off between model complexity and generalization of the model to other
data sets[48]. By choosing a task, such as discriminating styles of motion, we
gain a well-defined metric for performance.

One of our goals is to observe a user who is interacting with a system and
be able to automatically find patterns in their behavior. Interesting questions
include:

• Is this (a)typical behavior for the user?
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• Is this (a)typical behavior for anyone?

• When is the user transitioning from one behavior/strategy to another
behavior/strategy?

• Can we do filtering or prediction using models of the user’s behavior?

We must find the behavior alphabets that pick out the salient movements rele-
vant to the above questions. There probably will not be one canonical alphabet
for all tasks but rather many alphabets each suited to a group of tasks. There-
fore we need an algorithm for automatically generating and selecting effective
behavior alphabets. The goal of finding an alphabet that is suitable for a ma-
chine learning task can be mapped to the concept of feature selection.

The examples presented in Section 4 employed the Cogno Algorithm[12] to
perform unsupervised clustering of the passive-physics innovations sequences.
Unsupervised clustering of temporal sequences generated by human behavior is
a very active topic in the literature[45, 1, 32, 38].

3.5 Summary

This section presents a framework for human motion understanding, defined as
estimation of the physical state of the body combined with interpretation of
that part of the motion that cannot be predicted by passive physics alone. The
behavior system operates in conjunction with a real-time, fully-dynamic, 3-D
person tracking system that provides a mathematically concise formulation for
incorporating a wide variety of physical constraints and probabilistic influences.
The framework takes the form of a non-linear recursive filter that enables pixel-
level processes to take advantage of the contextual knowledge encoded in the
higher-level models.

The intimate integration of the behavior system and the dynamic model
also provides the opportunity for a richer sort of motion understanding. The
innovations are one step closer to the original intent, so the statistical models
don’t have to disentangle the message from the means of expression.

Some of the benefits of this approach including increase in 3-D tracking
accuracy, insensitivity to temporary occlusion, and the ability to handle multiple
people will be demonstrated in the next section.

4 Results

This section will provide data to illustrate the benefits of the Dyna frame-
work. The first part will report on the state of the model within Dyna and
the quantitative effects of tracking improvements. The rest will detail qualita-
tive improvements in human-computer interface performance in the context of
several benchmark applications.
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Figure 18: Left: video and 2-D blobs from one camera in the stereo pair.
Right: corresponding configurations of the dynamic model.

4.1 Tracking Results

The dynamic skeleton model currently includes the upper body and arms. The
full dynamic system loop, including forward integration and constraint satisfac-
tion, iterates on a 500MHz Alpha 21264 at 600Hz. Observations come in from
the vision system at video rate, 30Hz, so this is sufficiently fast for real-time
operation. Figure 18 shows the real-time response to various target postures.
The model interpolates those portions of the body state that are not measured
directly, such as the upper body and elbow orientation, by use of the model’s
intrinsic dynamics, the kinematic constraints of the skeleton, and and the be-
havior (control) model.

The model also rejects noise that is inconsistent with the dynamic model.
This process isn’t equivalent to a simple isometric smoothing, since the mass ma-
trix of the body is anisotropic and time-varying. When combined with an active
control model, tracking error can be further reduced through the elimination of
overshoot and other effects. Table 19 compares noise in the physics+behavior
tracker with the physics-only tracker noise. It can be seen that there is a sig-
nificant increase in performance.

The plot in Figure 20 shows the observed and predicted X position of the
hand and the corresponding innovation trace before, during and after the motion
is altered by a constraint that is modeled by the system: arm kinematics. When
the arm reaches full-extension, the motion is arrested. The system is able to
predict this even and the near-zero innovations after the event reflect this. Non-
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Figure 20: Observed and predicted X position of the hand and the corresponding
innovation trace before, during and after expression of a modeled constraint:
arm kinematics.
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Figure 21: Observed and predicted Y position of the hand and the corresponding
innovation trace before, during and after expression of a un-modeled constraint:
collision with a table.

zero innovations before the event represent the controlled acceleration of the
arm in the negative X direction. Compare to the case of a collision between a
hand and the table illustrated in Figure 21. The table is not included in the
system’s model, so the collision goes unpredicted. This results in overshoot, and
a corresponding signal in the innovations process after the event.

Figure 22 illustrates one of the most significant advantages to tracking of
feedback from higher-level models to the low-level vision system. The illustrated
sequence is difficult to track due to the presence of periodic, binocular, flesh-
flesh occlusions. That is, one hand is occluded by the other from both camera
viewpoints in a periodic fashion: in this example at approximately 1Hz. The
binocular nature of the occlusion events doesn’t allow for view selection to aid
tracking: there is no unambiguous viewpoint available to the system. Flesh-flesh
occlusions are particularly difficult for tracking systems since it’s easier to get
distracted by an object with similar appearance (like another hand) than it is
to be distracted by an object with a very different appearance (like a green shirt
sleeve). The periodic nature of the occlusions means that the system only has
a limited number of unambiguous observations to gather data before another
occlusion again disrupts tracker stability.

Without feedback, the 2-D tracker fails if there is even partial self-occlusion,
or occlusion of an object with similar appearance (such as another person), from
a single camera’s perspective. In the even more demanding situation of periodic,
binocular, flesh-flesh occlusions, the tracker fails horribly. The middle pair of
plots in Figure 22 show the results. The plots from a cross-eyed stereo pair.
The low-level trackers fail at every occlusion causing the instantaneous jumps
in apparent hand position reported by the system. Time is along the X axis,
from left to right. The other two axes represent Y and Z position of the two
hands. The circular motion was performed in the Y-Z plane, so X motion was
negligible. It is not shown in the plot.
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Figure 22: Tracking performance on a sequence with significant occlusion. Top:
A diagram of the sequence and a single camera’s view of Middle: A graph of
tracking results without feedback (cross-eyed stereo pair). Bottom: Correct
tracking when feedback is enabled (cross-eyed stereo pair).

The situation with feedback, as illustrated in the lower pair of plots in Fig-
ure 22, is much better. Predictions from the dynamic model are used to resolve
ambiguity during 2-D tracking. The trackers survive all the occlusions and
the 3-D estimates of hand position reveal a clean helix through time (left to
right), forming rough circles in the Y-Z plane. With models of behavior, longer
occlusions could be tolerated.

4.2 Applications

Section 4.1 provided quantitative measures of improvement in tracking perfor-
mance. This section will demonstrate improvements in human-computer in-
teraction by providing case studies of several complete systems that use the
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Figure 23: The T’ai Chi sensei shows gives verbal instruction and uses it’s
virtual body to show the student the T’ai Chi moves.

Figure 24: Visual and Auditory cues are used to give the student feedback. The
sensei mimics the student motions and indicates problems to be worked on.

perceptual machinery described in Section 3.
The three cases are the T’ai Chi instructional system, the Whack-a-Wuggle

virtual manipulation game, and the strategy game Netrek.

4.2.1 T’ai Chi

The T’ai Chi sensei is an example of an application that is significantly enhanced
by the recursive framework for motion understanding simply by benefiting from
the improved tracking stability. The sensei is an interactive instructional system
that teaches the human a selection of upper-body T’ai Chi gestures[7].

The sensei is embodied in a virtual character. That character is used to
demonstrate gestures, to provide instant feedback by mirroring the student ac-
tions, and to replay the student motions with annotation. Figure 4.2.1 shows
some frames from the interaction: the sensei welcoming the student on the left,
and demonstrating one of the gestures on the right. The interaction is accom-
panied by an audio track that introduces the interaction verbally and marks
salient events with musical cues.

There are several kinds of feedback that the sensei can provide to the student.
The first is the instant gratification associated with seeing the sensei mirror
their motions. This allows the student to know that the sensei is attending to
their motions and gives immediate feedback regarding their perceived posture
relative to the ideal gestures they were just shown. When the sensei decides
that feedback is appropriate this mirroring stops: indicating to the student that
the interaction paradigm has changed. In this feedback mode the sensei can
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either critique individual gestures or remind the user of the global order of the
sequence. The left and center images in Figure 24 show an example of a critique
of a specific gesture. Visual and musical cues indicate the temporal location of
the error and the sensei’s gaze direction indicates the errant hand. The right
image in Figure 24 is an example of feedback regarding the overall structure of
the T’ai Chi sequence.

There are several technologies at work making these interactions possible.
The mirroring is accomplished simply by piping the tracking data through the
inverse-kinematics engine inside the sensei’s body. This is technically simple,
but it is imperative that it be robust. It is a meaningful event when the sensei
stops mirroring: it signals to the student that they should stop and prepare
to receive feedback. Tracking failures can cause the sensei to pause for an
indeterminate length of time. Even worse, tracking failures can cause the sensei
to spontaneously contort into one of many unpleasant configurations. Either
event will obviously detract from the student’s learning experience.

The technology behind the identification and interpretation of T’ai Chi ges-
tures is somewhat more complex. To summarize: the sensei learns T’ai Chi
gestures by watching a human perform the motions. The system builds Hidden
Markov Model (HMM) of each gesture. The HMMs are comprised of a sequence
of states with Markov temporal dynamics and Gaussian output probabilities.
In effect they are capturing a mean path through parameter space that repre-
sents the gesture, and a covariance that specifies an envelope around the mean
path that represents the observed variability. The gestures are recognized in
the usual way [10]. Once a gesture is recognized, the lattice is examined to find
the point at which the observed gesture differ the most from the learned ideal,
weighted by the allowable variation [7]. Tracking errors can have a large impact
on this process. If a critical chunk of a gesture is missed due to tracking error
then it may be unrecognizable, or worse, the system may attempt to correct
illusory motion errors and confuse the student.

The individual T’ai Chi gestures are relatively complex. Each gesture takes
several second to perform. Critiques often involve playback of observed and
ideal gestures, and as a result a single critique may last several tens of seconds.
The result is that the frequency of interaction is relatively low. Tracking errors
that result in misclassified gestures or illusory motion errors can thus lead to a
significant break in the experience. Failures thus lead to frustration. Frustration
is antithetical to the underlying goal of T’ai Chi: relaxation and focus.

The bottom (left) plot of Figure 25 shows a flawless execution of a five
gesture sequence as tracked by a bottom-up 3-D blob tracker. The individual
gestures are hand-labeled at the top of the plot. The plots show, from top to
bottom, the X, Y and Z position of the left hand, right hand, and head. Y
is positive up. X is positive to the student’s right. Z is positive away from
the user. The following discussion will focus on two salient features. The first
feature is the initial bump in the Y axis of both hands. This corresponds to
the up and down motion of “Opening Form”. The second feature is the double
bump in the right hand X position at the end of the sequence. This corresponds
to the right hand motion in “Single Whip” and the motion of both hands to the
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Figure 25: Bottom: This example is performed carefully to avoid self-
occlusions. Middle: An intentionally pessimal example demonstrating all pos-
sible failure modes. Top: The recursive tracker is is able to resolve the ambi-
guities.
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right in “Brush Knee”.
The middle plot of Figure 25 shows the tracking output from the bottom-up

3-D blob tracker for a slightly different execution of the sequence. To a human
observer the motions are very similar except that the motions in the failure case
are slightly more exaggerated. The tracking data looks significantly different
due to the tracking failures associated with occlusions. The first salient feature
shows significant clipping as the top of the gesture is lost when one or both of
the hands occlude the face in one or both of the cameras. This is caused by the
hands being raised higher than ideal (or, alternatively if the student is shorter
than the master who taught the sensei). The second feature is lost because the
hands are held too close together. This causes the 2-D blob trackers to fail in
one or both cameras. Almost no tracking data is acquired after 14s due to this
error.

The top (right) plot of Figure 25 is the result of tracking motion very similar
to that represented by the failure modes on the left. The difference is that in
this case the motion is tracked by the recursive system described in Section 3.
Both features are present and well-formed. This is true despite the fact that
the hands were up high enough in opening form to cause occlusion with the
face and close enough together to cause 2-D tracking failures at the end of the
sequence. The recursive structure of the tracker allows the system to integrate
information at all levels of modeling to produce good tracks in these ambiguous
cases, and sensei is better able to evaluate the student’s true departures from
the ideal and provide more appropriate feedback.

4.2.2 Whack-a-Wuggle

Whacka is a virtual manipulation game. A virtual actor mirrors the motions
of the human’s upper body. The goal is for the human to touch objects in
the virtual world vicariously through the virtual actor. The world contains
static objects (Wuggles) and moving objects (Bubbles). Wuggles can always
be whacked by returning to the same physical location since they do not move
in the virtual environment, and the mapping between the physical and virtual
worlds is fixed. Bubbles move through the virtual space, so they require hand-
eye coordination to pop. In addition each Bubble is at a different depth away
from the player in the virtual world. Due to poor depth perception in the virtual
display, popping a Bubble requires the human to reach up to the approximate
location of the bubble and then perform a limited search in depth.

There are a very small number of things that people do with their hands
when playing Wacka. Hands are usually either resting, whacking, or popping.
Whacking quickly becomes a ballistic action once the human learns where the
Wuggles map into the physical world. Popping always involves performing the
more complex visual-motor feedback loop required to find the Bubbles because
they have random and only partially observable depth. The pace of the game
is fast enough to discourage motivated players from wasting time performing
extraneous gesticulations.

This context was used to test the method of alphabet selection described
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Figure 26: In Whack-a-Wuggle a clown mirrors the player’s body motions. By
guiding the clown’s arms, the player can Whack Wuggles (the objects with eyes)
and pop Bubbles (the objects floating in the air).

in Section 3.4.4. The player’s motions were tracked and hand labeled for three
types of behavior: Whacking, Popping, or Tracker Failure. Task 1 was to recog-
nize these three classes of behavior. Task 2 was to distinguish the playing styles
of different people.

The best alphabet for distinguishing the three players consisted of 3 elements,
with 10 states each. Figure 27 shows alphabet traces for the three players
over approximately one minute of play. These traces are the features used
for player identification. Player identification performance was 75% for three
players. Gesture recognition performance was also over 70%.

These results demonstrate the feasibility of recognizing gestures from model
innovations. Recent work on temporal sequence clustering [45, 1, 32, 38] provides
the clustering tools required for similarly attacking more complex domains.

5 Background

The implementation described above combines a rich 3-D model of the human
body with probabilistic image features and a recursive formulation to realize
robust tracking of the human form. Dyna also explicitly incorporates learned
patterns of control into the body model. This level of modeling detail and
careful feedback design greatly improves robustness and opens the door to very
subtle analysis of human motion. However, not all applications require this level
of detail. There is now a rich literature on human motion perception, and it is
full of alternative formulations. This section will introduce you to some of the
key papers and place them within the context of the Dyna framework.

Perhaps the first efforts at body tracking were by Badler and O’Rourke in
1980[34], followed by Hogg in 1988 [33]. These early efforts used edge infor-
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Figure 27: Top: Tracking data. Bottom: Corresponding likelihood trace of
the identification alphabet.

mation to drive a kinematic model of the human body. These systems require
precise hand initialization, and can not handle the full range of common body
motion.

Following this early work using kinematic models, some researchers began
using dynamic constraints to track the human body. Pentland and Horowitz
employed non-rigid finite element models driven by optical flow in 1991[36], and
Metaxas and Terzopolous’ 1993 system used deformable superquadrics [27, 31]
driven by 3-D point and 2-D edge measurements.

Authors have applied variations on the basic kinematic analysis-synthesis
approach to the body tracking problem[42, 6, 21]. Gavrila and Davis[19] and
Rehg and Kanade[41] have demonstrated that this approach has the potential
to deal with limited occlusions, and thus to handle a greater range of body
motions.

The Dyna framework is most closely related to the behavior modeling work
of Pentland and Liu in 1995[37], Blake[24] and Bregler[8]. Those papers intro-
duce the idea of modeling human behavior as the interaction between low-level
observations and dynamic models in a recursive framework.

5.1 Particle Filtering

It is useful to compare the approach advocated here with that taken by particle
filtering approaches such as the Condensation algorithm proposed by Isard
and Blake[25]. Both approaches have their roots in recursive filtering and control
theory as described in Section 2.

The fundamental difference between recursive methods and particle filtering
is in the representation of the probability density from which the state estimate
is drawn. Recursive filtering methods, of which the Kalman filter is an example,
represent the density parametrically. The Condensation algorithm is a frame-
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work for representing the density as a set of samples drawn from the underlying
distribution and is therefore not parametric. The Multiple Hypothesis Testing
(MHT) framework from the control and estimation community[3] provides an
extension to unimodal recursive filtering frameworks that allows multi-modal,
parametric representations. Work by Rehg[11] shows how unimodal trackers
such as the one described here may be embedded in the MHT framework.

All recursive filtering frameworks require a mechanism for propagation for-
ward in time of the estimated density. In Kalman filtering this is accomplished
in parameter space using a unimodal model of state dynamics to update both
the mean, x̂t, and variance, Σt, of the density. Kalman filters assume a linear
model of the state dynamics, Φ. The mean and variance updates are accom-
plished with the well known closed-form equations[2].

In the Condensation algorithm, the distribution is represented non-parametri-
cally, so it must employ a different mechanism for state update. Specifically the
distribution is represented as a set of samples, St, in model state space with an
associated set of weights Πt. The system dynamics are represented as a density
conditional on the current model state: p(Xt+1|Xt). Model update begins by
selecting a sample, s

(i)
t , from the set St with probability determined by the set

of weights Πt. A new sample is then drawn from the corresponding density
p(Xt+1|Xt) = s

(i)
t , and becomes the sample s

(i)
t+1 in the updated representation.

The new weight π
(i)
t+1 is determined by comparing the sample s

(i)
t+1 to the image

evidence.
A tracker using Condensation must maintain a large number of samples

to adequately represent the underlying distribution. The literature calls for
approximately 1500 samples to track a bouncing ball with a single degree of
freedom, and as many as 15,0000 samples to track the hand during a drawing
task [26]. The advantage is that the distribution is not required to match
a pre-defined parametric form. Since the Kalman filter chooses a parametric
representation that is unimodal, it is possible for ambiguous observations to
move that single mode away from the truth. Dynamic state updates will likely
cause the location of the mode to diverge further from the truth over time.
The sampled representation of the density in Condensation means that it
is possible for a portion of the probability mass to be allocated to divergent
hypotheses. As long as there are a sufficient number of samples available to
adequately represent the distribution, alternate hypotheses may be propagated
forward as long as there are observations to support them.

One issue with Kalman-derived filtering techniques is that it is difficult to
formulate closed-form update equations for arbitrary parametric density repre-
sentations as is done for the unimodal Gaussian case. MHT is a method for
maintaining a set of N unimodal Gaussian hypotheses in the Kalman filtering
framework without the need to reformulate the update equations. The MHT
method is essentially a bank of Kalman filters. Each Kalman filter makes predic-
tions according to its own, possibly unique, state estimate and dynamic model.
The resulting innovations sequence is a measure of how well each filter is explain-
ing the observed data. Filters with large innovations are poor predictors and
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are candidates for reinitialization [3]. Due to the fact that each filter accounts
parametrically for some component of the underlying density, only a handful of
hypotheses are required, as compared to the thousands of point hypotheses re-
quired by Condensation. The literature shows that MHT can track a human
figure, even with relatively weak underlying unimodal trackers, with as few as
10 hypotheses[11].

These methods therefore represent extremes of a continuum where com-
putational cost can be traded off against modeling cost. For systems where
the cost of model-building is very high compared to the cost of computation,
Condensation is a good, general method for tracking. For situations where
the dynamics is reasonably well understood and the cost of computation is very
high (as in the case of real-time human motion understanding), then parametric
recursive filtering, possibly in conjunction with an MHT framework, is a better
choice.

5.1.1 Recent Work on Condensation

In the time since the first description of Condensation in 1996 [24] there
have been several documenting modifications to Condensation that help avoid
the curse of dimensionality involved in tracking systems with many degrees of
freedom or with complex dynamic models. Mostly the improvements in com-
putational efficiency of the algorithm are achieved by incorporating more so-
phisticated domain models. The pure form of Condensation was the gen-
eral tracker that discovered the dynamics from the observation at high com-
putational cost. These extensions involve replacing flocks of hypotheses with
domain-specific models that are better at capturing the true dynamics of the
systems. These extensions essentially fill in the spectrum of trackers defined by
pure Condensation on one end, and the MHT framework on the other.

MacCormick and Blake [30] propose an extension that culls samples that
represent inconsistent model states. This requires the Condensation imple-
mentation to have more domain knowledge. For the task of tracking single
degree of freedom motion of human bodies, this improvement allows tracking
2-D movement of head and shoulders of two people with 2000 samples. That
is compared with tracking three people, two stationary and one moving with a
single degree of freedom with 1000 samples.

Duetscher, North, Bascle, and Blake [14] adds the notion of kinematic
singularities and end-stops. By adding significant domain knowledge they bring
Condensation much closer to MHT, requiring 50 samples to track arm motion
with two degrees of freedom (elbow flexion and and shoulder rotation). They
also track walking motion that is similar to, but less energetic than the dancing
motions tracked by the MHT system in [11] with only 10 hypotheses.
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5.2 Analysis-Synthesis

The analysis-synthesis approach is a widely used approximation to the general
framework of recursive filtering. There are two major differences between the
recursive framework advocated here and the analysis-synthesis (AS) framework:
AS includes a significant feed-forward component, and lacks a model of system
dynamics. Each of these issues are discussed in detail below.

5.2.1 Overview of Analysis-Synthesis

An AS tracker is composed of an Analysis module, a Synthesis module and a
model of the system to be tracked. The Analysis module is composed of a set of
image processing routines that extracts features from image observations. The
Synthesis module renders the model state as a synthetic image composed of
features congruent to those extracted by the image processing routines. The
overall goal is to directly compare the model state to the observed image. An
iterative process updates the model state until the best match between image
and model is found.

Due to the complexity of real world image production, direct comparison
is very difficult. The Synthesis module would have to generate photo-realistic
images of each hypothesized configuration. Further, direct image comparison
would likely be dominated by aspects of the scene that may be uninteresting:
the direction of illumination for example. As a result, the comparison is done in
an abstract feature space. Image processing routines are used to extract these
features from the image. In practice these features are often edge features, but
in principle could be any low-level feature. The model state is rendered into
this feature space by the Synthesis model. The set of features produced by
the Synthesis module is then compared to the set of features extracted by the
Analysis module. Discrepancies between analysis features and synthesis fea-
tures represent a residual to be minimized by the system. The minimization
of this residual is solved using iterative gradient descent in model space. This
requires a model of how variation in feature space maps into variation in model
space. Since Synthesis likely involves complex non-linear components from rev-
olute model variables, perspective projection, and other processes, this model
is usually a local, linear approximation. This places constraints on the gradient
descent step size and leads to the search having a high computational cost.

In the case of tracking articulated bodies or body-parts, the model usually
consists of a kinematic linkage. This model can be linearized around the current
estimated operating point to yield a set of Jacobian matrices relating variation in
feature space to model state perturbance. These Jacobians are used to transform
the measured residuals into model adjustments. The iteration process may be
weighted by temperature coefficients, or filtered by other, more sophisticated,
gradient decent approaches.
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5.2.2 The Feed-Forward Nature of Analysis

The analysis module is feed-forward, meaning that the image processing routines
(often deterministic filters) operate without access to any context that may be
available in the rest of the system. This one failing has a serious impact on the
stability of the system. The Analysis module does not have access to the high-
level constraints coded in the system model or Synthesis module that might help
resolve low-level ambiguities. There is no one place where images and high-level
knowledge are brought together. The two domains are separated by the feature
abstraction. This barrier makes AS systems more modular. The benefits of
breaking this barrier are discussed in detail in Section 4.1.

It is important to note that merely providing prior information to an Analysis
module is not enough. The implementation must have enough mathematical
flexibility to incorporate the information in a meaningful way. As an example,
convolution trackers often use simple Kalman predictors to improve tracking
performance, but is this a truly recursive system?

Consider the normal operation of a convolution tracker: an image patch is
copied from an image, possibly matted, and then convolved with an image (or
a region of an image). The maximum resulting value is accepted as the new
location of the feature represented by the image patch. The easiest, and most
common, way to incorporate this prior knowledge into the tracker is to constrain
the search to the likely area. This does not result in a better answer. It merely
results in a more efficient answer since less area needs to be searched[23]. If the
“right” answer is within the oval it will be found faster, but there will be no
difference between the result of this search and the result of the slower search.
A truly recursive system would yield a different maximum.

This raises the question of feature selection. Probabilistic features such as
the blobs presented in Section 3 provide a mathematically natural method of
integrating high-level knowledge. Features such as convolution patches, edges,
and other deterministic, filter-based features, do not provide easy integration of
context.

5.2.3 Lack of System Dynamics

The second major difference between the two techniques is the form of the model
update. In AS, a distance metric is induced in the chosen feature space. These
gradients are then transformed into model space to determine the appropriate
system update. The system update is completely driven by observations. The
Recursive Filter update is shaped not only by observation models, but also the
system dynamics, as described in Section 3. This enables the Recursive Filter
to take advantage of the constraints of system dynamics when determining the
appropriate system update. Since real dynamic systems are heavily constrained
by the laws of physics and the structure of their control mechanisms, the system
dynamics is an important source of context for the observer.

The lack of these constraints on the update mechanism in AS means that
past model configurations do not inform the current choice of state estimate.
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Ambiguities or errors in feature extraction may result in the iteration process
finding an explanation that, while plausible in isolation, is impossible due to
the physical and practical limitations on the actual system being observed. One
example of this sort of failure is the instantaneous flip between two solutions
that are ambiguous in the absence of dynamic constraints.

5.2.4 How Real Systems Address These Shortcomings

When building an AS system, it is necessary to find ways to overcome these
shortcomings in the framework. This section will discuss several systems, their
contribution to AS work, and how they relate to true recursive filtering.

Gavrilla and Davis [19, 20] employ a kinematic model of the human body in
their AS framework. The kinematic skeleton is augmented with a skin composed
of tapered superquadrics. The subjects wear tight clothing, so the chains of
tapered superquadrics are a good approximation to the external silhouette of
the body. Edge energy is used as the common feature space: it is extracted
from the image by a filter and rendered from the model. This, combined with
the model parameter search for each image, makes the system computationally
very expensive. This is an example of classic AS applied to the tracking of the
human body. Later improvements included avoiding the inversion of Jacobian
matrices to improve the performance of the search algorithm.

Kakadiaris and Metaxas [28] also use contour information combined with
a detailed volumetric model of the human body. Unlike the above system, this
system uses 3-D deformable models to track features in the image sequence.
These low-level trackers represent a further dimensionality reduction, and thus
undoubtedly improve the computational performance of the system. However,
the trackers do not receive assistance from the body model and are subject
to failures. The system partially deals with these failures by predicting occlu-
sions. These predictions are used to select fortuitous views from the collection
of available cameras in an attempt to avoid using data from ambiguous 2-D
tracking results. Dynamics are used to make observation predictions, but these
predictions are only used to initialize the feature search, as discussed above.

Delamarre and Faugeras [13] use the AS framework to track the human
body. The silhouette is the common feature space. Silhouettes are tracked
using active contours that are sensitive to optic flow and image intensity. The
3-D body model is a kinematic chain composed of spheres, parallelpipeds, and
truncated cones. This model is projected into the image plane and the model
is adjusted to match the observed silhouette. Since active contours are used,
it is possible that prior information could help drive the contour tracker. This
is a distinct advantage over AS implementations that use edge energy, or other
deterministic features.
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5.3 Recursive Systems

Some recursive systems have relied on optical flow for tracking. Similar to regu-
larization work, they attempt to induce a low dimensional model as a minimum
mean squared error explanation of noisy flow data. They modify the regular-
ization by utilizing the benefits of Kalman filtering: prediction of observations
and corresponding revision of the state estimate given new observations. This
ideally eliminates the search inherent in the regularization framework.

Pentland and Horowitz [36] demonstrate the power of this framework for
tracking 3-D and 2 1

2 -D motions on deformable and articulated objects in video.
They use modal analysis to project the flow field into relatively low-dimensional
translation and deformation components. In this way they take advantage of
the regularization approach to reduce the dimensionality of the optic flow data,
but avoid the usual search in model parameter space. These low-dimensional
signals are then used by an extended Kalman filter framework to estimate the
new best estimate of pose.

The mapping of optic flow data to model influence requires the ability to
predict model state and project that state into the image plane to determine
proximity. This requires careful initialization. Although the framework should
support prediction and resolution of ambiguities such as occlusion, those issues
are not addressed in the the literature.

Bregler and Malik [8] present a very interesting recursive framework for
tracking of the human body similar to Dyna that includes probabilistic feature
extraction influenced by dynamic models, and the possibility for tightly coupled
behavioral models. The system relies on optic flow data, but tracks blobs in that
data. Unfortunately the early work on tracking focused entirely on 2-D features
and 2-D models. As a result the motions tracked were all 2-D motions parallel
to the camera. The dynamic models were all learned from observation. This is
interesting, but also limits the system because it learns models in 2-D that are
not good approximations of the real system dynamics due to the unobservability
of truly 3-D motions in projective 2-D imagery.

In later work [9], the system was extended to 3-D but the extension came at
the expense of the interesting recursive aspects of the earlier system. The 3-D
system involved a return to more classical regularization work with the addition
of clever representations for rotation that made the system tractable. Like most
of work covered in this chapter the focus was on off-line motion capture, not
real-time interface.

5.4 Bayesian Networks

Several systems have attempted to substitute explicit models at various levels
of the tracking process with Bayesian networks.
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Sherrah and Gong [44] use mean-shift trackers and face detectors in 2-D
imagery to recover low-level features. In a process called tracking by inference,
the tracked features are then labeled by a hand-crafted Bayesian Network. The
simple trackers will fail during periods of ambiguity, but the network repairs
the resulting mislabeling. This is accomplished by computing the most likely
labeling given the observations and the network, which encodes a combination
of distilled knowledge about dynamics and human habit.

Kwatra, Bobick and Johnson [29] present a similar system except that
the low-level features are generated by a sophisticated static analysis method
called Ghost[22] and the temporal integration modeling is concentrated into
a Bayesian network. The probabilities in the network are maintained using a
particle filtering method. This division is advantageous because the framework
can accommodate any sort of static feature estimation. The statistical model of
dynamics is weak compared to explicit kinematics and dynamics, but has the
advantage of being light-weight.

Pavlović, Rehg, Cham and Murphy [35] present a system that tracks
walking motion parallel to the image plane. This system dispenses with precise
volumetric and kinematic models. Image correlation is used to track parts of the
body. The trackers are initialized by a generalized form of MHT that consists of
many Kalman filters embedded in a Bayes network. The Kalman filters employ
learned dynamic models to make predictions, and the innovations process is
used to drive model switching.

These systems have the advantage that the probabilistic models of dynamics
and habit can be estimated from data and therefore can more easily accom-
modate idiosyncrasies of those datasets, but the models are soft compared to
explicit kinematic and dynamic models, so that convenience can come at the
cost of system fidelity.

5.5 Summary

Systems that visually track human motion fall into three basics categories:
analysis-synthesis, recursive systems, and the more recent wave of fully sta-
tistical methods including particle filtering and Bayesian networks. Each of
these methods has it’s uses. Due to their modularity, analysis-synthesis systems
are simple to build and can employ a wide range of features, but they rely on
expensive searches for the synthesis component and allow features failures to
propagate though the entire system. Particle filtering are an easy way to get
many of the advantages of a truly recursive system with minimal modeling ef-
fort, but their lack of strong models requires massive Monte-Carlo simulations
to adequately represent the underlying probability density. Fully recursive sys-
tems, such as the Dyna implementation presented above, require significant
modeling effort, but this effort is rewarded with robustness, efficiency, and sub-
tlety of analysis. Other recursive systems can allow the implementor to realize
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some of these benefits with less modeling effort when the application is less
demanding.

6 Conclusion

Sophisticated perceptual mechanisms allow the development of rich, full-body
human-computer interface systems. These systems are applicable to desk- and
room-scaled systems, theatrical devices, physical therapy and diagnosis, as well
as robotic systems: any interface that needs to interpret the human form in
it’s entirety. In this chapter you have seen the details of a computer vision
system called Dyna that employs a three-dimensional, physics-based model of
the human body and a completely recursive architecture with no bottom-up
processes. This system is complex, but illustrated how careful modeling can
improve robustness and open the door to very subtle analysis of human motion.
Not all interface systems require this level of subtlety, but the key elements of
the Dyna architecture can be tuned to the application.

Every level of processing in the Dyna framework takes advantage of the con-
straints implied by the embodiment of the observed human. Higher level pro-
cesses take advantage of these constraints explicitly while lower level processes
gain the advantage of the distilled body knowledge in the form of predicted
probability densities. These predictions enable more robust classification deci-
sions. Systems which omit a model of embodiment entirely, or try to hallucinate
physical constraints in the image plane will fail to capture important aspects of
human motion and the overall system performance will suffer. Understanding
embodiment is crucial to perceiving human motion.

Systems that rely on any completely bottom-up processing will incur per-
formance penalties to recover from inevitable low-level errors, if it is possible
to recover at all. Recursive frameworks are also crucial to perceiving human
motion.

As perceptual technologies continue to improve, they will enable an environ-
ment rich with interactivity. Computers will cease to be boxes that necessitate
unnatural, and sometimes painful or damaging interaction. Computers disap-
pear into the environment, and the things we do naturally will become the
primary interface. Our most important experiences are interactions with other
people, and as machine perception advances, computation will finally begin to
engage in that conversation.
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