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Abstract— We consider the problem of optimally parking empty
cars in an elevator group so as to anticipate and intercept the
arrival of new passengers and minimize their waiting times. Two
solutions are proposed, for the down-peak and up-peak traffic
patterns. We demonstrate that matching the distribution of free
cars to the arrival distribution of passengers is sufficient to
produce savings of up to 80% in down-peak traffic. Since this
approach is not useful for the much harder case of up-peak traffic,
we propose a solution based on the representation of the elevator
system as a Markov decision process (MDP) model with relatively
few aggregated states, and determination of the optimal parking
policy by means of dynamic programming on the MDP model.

I. INTRODUCTION

The passenger traffic pattern in modern buildings with mul-
tiple elevator shafts varies considerably throughout a typical
business day: early in the morning, most of the passengers
travel from the lobby to the upper floors, while at the end of the
day, most of them leave the floors and travel primarily to the
lobby in order to exit the building. These two traffic patterns,
known as up-peak and down-peak regimes, respectively, have
very irregular distribution over origin and destination of travel,
which has the effect of leaving cars after completion of service
at floors far from where they would be needed next. At the
same time, these patterns have a specific probabilistic structure
which can be exploited by a car scheduling algorithm.

Parking of free cars has been identified as an important part
of elevator group supervisory control algorithms [1]. In this
paper, we consider the problem of optimally dispatching empty
cars to desired parking locations in a manner that minimizes
the usual optimization criterion in group scheduling algorithms:
the waiting time of future hall calls [2].

A parking algorithm could actively move empty cars so as
to anticipate and intercept future hall calls—long before these
calls actually occur. Reasoning about events far into the future
and deciding on a suitable course of action can be handled by
a planning sub-system that decides upon new parking locations
for all free cars, as soon as their number changes, and a
corresponding plan-execution sub-system that brings the free
cars to these parking locations.

The idea of actively moving empty cars with the explicit
purpose of parking them favorably with respect to future hall
calls is present in several studies on optimal group elevator
scheduling. One possibility is to use the statistical properties
of the traffic pattern in order to dispatch cars to the floors
where they would be most needed. In the case of pure up-
peak traffic, it is clear that a car that has delivered all of its
passengers should be dispatched immediately back to the lobby

for the next batch of passengers. This insight has been used in
the provably optimal solution for pure up-peak traffic proposed
by Pepyne and Cassandras [3]. Although pure up-peak traffic
rarely exists in practice and there is almost always additional
inter-floor traffic, active parking of cars is an important element
of most industrial elevator control systems [1].

Our strategy is to re-park all available cars (i.e., the ones that
are not currently serving passengers) as soon as their number
changes, due to one of the following two events: either a car
becomes free (empty) and available for service, or a car is
assigned to service a new hall call and is no longer empty. We
assume that the optimal parking locations for a fixed number
of free cars when the arrival rates are fixed remains the same,
i.e., we ignore the effects the remaining (busy) cars might
have on the optimal parking locations of the free ones. Under
this assumption, planning is reduced to the computation of a
policy that maps sets of free cars of various cardinality to the
corresponding parking locations. In other words, the planning
system computes an universal plan [4] covering all possible
numbers of free cars, and uses it as long as the traffic flow in the
building remains relatively constant; as soon as the stochastic
properties of the traffic change, a new universal plan (policy)
is computed.

II. PARKING POLICIES AND THEIR EXECUTION

We are considering a building of F floors equipped with Nc
identical elevator cars. At any particular moment, C of these
cars are free, i.e., have no hall or car calls assigned to them
(0 ≤C ≤ Nc). When a new hall call is signaled, a scheduling
algorithm assigns it to one of the Nc cars; according to the rules
accepted in Japan, this assignment is never revoked later. As a
result, the number C of empty cars will either decrease (if the
new hall call is assigned to a free car) or remain the same (if
the new hall call is assigned to a busy car). C increases when
a car completes servicing all hall and car calls assigned to it,
and becomes free. A parking decision is made and executed in
this case too, in an identical manner.

We assume that the parking locations always coincide with
one of the landings, i.e., a car is never parked between two
adjacent landings (a formal proof that such parking positions
are optimal in down-peak traffic is presented in [5]). Under this
assumption, a parking policy is a mapping between the number
of empty cars C and a vector x of C parking locations xi, i =
1..C, such that 1≤ xi≤F . Thus, the number of possible policies
(mappings) is FC. Since some of these policies are identical
up to a symmetry, we choose a canonical representation for a



policy such that xi ≥ x j when i > j. Even after accounting for
such symmetries, it is clear that the number of possible policies
is very large.

When a parking decision has to be made, the free cars can
be either already parked at a floor, or moving between floors
in the process of executing a previous parking decision. We
denote by yi, i = 1..C the floors where each car i is at that
moment. If car i is not moving, yi is simply the floor where the
car is located; when car i is moving, yi is the first floor where
it can stop and possibly reverse its direction. (We assume that a
car cannot reverse its direction between landings, even though
such a possibility is likely to increase the responsiveness and
efficiency of the parking algorithm, if it were allowed.)

Once the locations of the cars y = [y1,y2, . . . ,yC] are known
and the desired parking positions x have been determined, a
parking plan has to be devised and executed by a parking
subsystem. The objective of this plan is to move the cars from
their current positions y to the desired parking floors x as
quickly as possible. Thus, the parking subsystem has to decide
which of the cars should go to each of the parking locations.
Since there are O(C!) possible matches between the C parking
positions and the C cars, finding the optimal plan (matching)
is not a trivial problem.

However, there exists a simple heuristic which allows the
parking decision to be executed efficiently and within a short
time: Preserve the vertical ordering of the cars. This heuristic
can be implemented by first sorting the locations yi, i = 1..C
of all cars in ascending order, while simultaneously sorting the
ordinal numbers k = [1,2, . . . ,C] of the cars in accordance with
the sorting of yi. Before sorting, the array of ordinal numbers
is initialized so that ki = i, i = 1..C. For example, if initially
y = [5,3,8,1] and k = [1,2,3,4], after sorting we obtain y =
[1,3,5,8] and k = [4,2,1,3]. Since the policy x is already in
canonical form, we can simply dispatch car ki to location xi
for each i = 1..C. Continuing the example from above, if the
policy is x = [2,4,6,8], the controller would dispatch car 4 to
the second floor, car 2 to the fourth floor, car 1 to the sixth
floor, and car 3 to the eighth floor. This parking decision is
very efficient: cars 1, 2, and 4 would have to move only by
one floor, and car 3 wouldn’t have to move at all, because it is
already at the eighth floor (or about to stop there).

We now return to the problem of finding the optimal parking
locations x given a particular traffic pattern, building height,
number of shafts, and speed and acceleration of the elevator
cars. (It might be expected that the optimal parking location is
also dependent on the current position and velocity of all cars,
but we ignore this dependency in order to make the problem
tractable.)

Our general strategy in the two cases described below (down-
peak traffic and up-peak traffic) is to first analyze how the
passenger flow influences the final positions of the cars when
they become free, then identify inefficiencies resulting from
uneven distribution of free cars, and finally decide how the cars
should be re-parked so that the responsiveness of the system to
new hall calls could be improved. The case of down-peak traffic

could be solved by optimization over an immediate horizon
(only the next arrival), while the much harder case of up-
peak traffic requires reasoning and planning over a sequence
of events (arrivals).

III. PARKING IN DOWN-PEAK TRAFFIC

Under down-peak traffic, most of the passengers depart from
upper floors and are delivered to the lobby. As a result, when
a car becomes free, it is usually located at the lobby. If such
cars are left where they delivered the last passenger (the lobby),
they would be far away from the locations where new calls are
likely to originate (the upper floors). In order to amend this
mismatch between where the cars are and where they would
be needed the most, empty cars can be moved from the lobby
to the upper floors as soon as they deliver the last passenger.

In order to make the problem tractable, for the case of down-
peak traffic we choose to optimize the waiting time of only the
first future hall call. (This approach, however, is not appropriate
for up-peak traffic and will be extended in the next section.)
Furthermore, we make the assumption that the first hall call
would be served by one of the free cars, rather than one of
the cars that already have passengers assigned to them, and we
also assume that the new call would occur only after the desired
parking location of the cars has been attained. We can define the
expected waiting time of the first future call as a function of the
state of free cars x only: Q(x) = ∑F

f =1 p f mini T (xi, f ), where
p f is the probability that the next passenger would arrive at
floor f , and T ( f1, f2) is the time it would take for a car parked
at floor f1 to serve a call originating at floor f2.

The number of possible placements of C cars at F landings
is FC, which is exponential in F and exhaustive computation
of Q(x) for all possible x is very expensive. However, intuition
suggests that the optimal parking position would be the one
that parks the cars as evenly as possible with respect to the
arrival distribution of passengers. An even distribution of cars
with respect to that probability would be one that positions the
C available cars so that their respective probabilities of serving
the next call would be equal (1/C).

One approximate way to achieve this is to split the building
into C zones, each served by one of the C cars. Given an array
of cumulative arrival probabilities Pj, j = 1..F , such that Pj =

∑ j
i=1 pi, this parking policy can be computed by Algorithm 1.

This solution would be optimal with respect to the minimization
criterion only when the average time to serve a call is the same
for each zone. In practice, however, this time would be higher
for larger zones, so a correction is necessary, in direction of
shrinking relatively larger zones so that they cover arrivals with
probability lower than 1/C. A simple greedy algorithm could
be employed to improve the solution, if necessary, although we
have found that improvement was never necessary in practical
down-peak regimes [5].

In order to analyze the active parking of cars so that their
parking locations match the distribution of the incoming traffic,
we performed experiments in down-peak traffic, where 80% of
the traffic originated at the upper floors with destination the
lobby, 10% originated at the lobby with destination the upper



Algorithm 1 x[1..C]=STATIONARYPOLICY(C,F,P[1..F])
1: d := 2C
2: j := 1
3: for i := 1 to C do
4: k := 2i−1
5: while P[ j]d < k do
6: j := j + 1
7: end while
8: x[i] := j
9: end for
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Fig. 1. Effect of parking in down-peak traffic in a building of 20 floors
and 6 elevator shafts. For low and medium rates, savings in waiting time can
reach 60% for this building; however, as the arrival intensity increases, parking
becomes counter-productive and has to be turned off.

floors, and the remaining 10% was traffic among the upper
floors only. The arrival rates at the upper floors were uniform,
i.e. p f = 0.9/(F−1). Under this condition, the optimal parking
policy for C free cars is the even splitting of the building into C
zones, with cars parked at the center of each zone. The parking
positions were pre-computed for each possible number of free
cars 0 ≤ C ≤ Nc, and parking policies executed as described
above.

Active parking was compared to the case when no parking
was performed and free cars were left at the floor where the
last passenger served by them was delivered. In both cases, we
used a scheduling algorithm based on dynamic programming,
described in a separate report [6]. The algorithm was tested on
three buildings with heights of 10, 20, or 30 floors, served by
either 3, 6, or 8 elevator shafts, whose cars were moving at a
speed of 3m/s. Each floor in these buildings was 4m tall, except
for the lobby, which was 5m tall.

The performance of the two algorithms was tested under
arrival rates ranging from 5 arrivals per hour up to the point
where the elevator group was overwhelmed by the arrival
stream and average waiting time exceeded two minutes. Fifty
runs were performed for each arrival rate to ensure statistical
significance of the results.

A typical graph for the waiting time of the parking algorithm

is shown in Fig. 1. It shows that actively parking the free cars so
that they are equally distributed along the height of the building
is very beneficial at low arrival rates, sometimes resulting in
savings in waiting time of more than 60%, but as the arrival
rate increases, this strategy becomes counter-productive. One
likely explanation is that there are very few free cars at such
rates, and keeping them in motion causes arriving passengers
at all floors to wait, while if a car is simply left parked where
it last delivered a passenger, it could at least pick up a new
passenger at that floor without delay. This “point of diminishing
returns” can be estimated from the number of free cars, building
height, and arrival rates by comparing the expected times to
pick up the next (unknown) passenger arrival with and without
re-positioning. However, it is both easier and more precise to
estimate it empirically from direct simulation.

IV. PARKING IN UP-PEAK TRAFFIC

The parking solution based on matching the arrival distribu-
tion of passengers to the parking location of the cars, while
successful for down-peak traffic, is not sufficient for up-peak
traffic. The reason for this is the very uneven distribution of
arrival rates — the majority of passengers arrive at the lobby,
and most of the waiting time is generated by such passengers.
Hence, it is of primary importance to reduce the waiting time
at the lobby under this type of traffic. However, parking free
cars with respect to only such passengers is not very efficient
either — sending each and every car to the lobby immediately
after it becomes free leaves the rest of the building uncovered,
and the waiting times of passengers arriving at the upper floors
start to dominate the overall average waiting time.

It is clear that if C free cars are available for service, some
proportion of them should be sent to the lobby, while the
remaining ones should be parked at the upper floors, again
distributed evenly with respect to the arrival rates there. The
question then becomes how to determine this proportion.

In order to find the correct proportion between cars parked
at the lobby and cars parked at the upper floors, we formulate
the decision problem as a Markov decision process (MDP). An
MDP consists of a finite number of states Si, i = 1,Ns, a set of
actions Ak, k = 1,Na, an immediate cost wi jk of the transition
between each pair of states Si and S j under action Ak, a matrix
Pi jk of the probabilities of transition between states Si and S j
under action Ak, and a distribution π(Si) which specifies the
probability that the system would start in state Si [7].

The simple optimization criterion used for down-peak traffic
— the immediate cost (waiting time) Q(x) of only the next
arrival — is not adequate for the case of up-peak traffic. If
only Q(x) were minimized, the computed optimal number of
cars at the lobby would always be only one, since one car is
sufficient to answer a potential single call at the lobby, and the
remaining cars would be better used at the upper floors in order
to minimize the waiting times of arrivals there. However, this
parking policy is not efficient for up-peak traffic, where the first
arrival at the lobby would use the single car parked there, and
the lobby would remain uncovered for future calls there before
any of the remainin cars could reach it.



A much more appropriate optimization criterion for this
traffic pattern is the average waiting time over a longer time
horizon (preferably infinitely long). In this case, it is more
convenient to express the optimization criterion as the average
waiting time over a sequence of N future arrivals: W̄N = 1/N <

∑N
i=1 Q(si) >, where si is the state of the elevator bank when

call i occurs, Q(si) is the expected waiting time of passenger i,
and the expectation <> is taken with respect to the distribution
of the next N arrivals. The true long-term average waiting time
of passengers, which is the exact criterion we would like to
optimize, is the limit of W̄N as N becomes infinitely large (i.e.,
the horizon becomes infinitely long): W̄∞ = limN→∞ W̄N .

Directly minimizing this optimization criterion is very hard,
because the space of possible states of the system s is very
large, and taking expectations with respect to all possible future
arrivals is computationally very expensive. In order to formulate
the optimization of this criterion in terms of long-term cost on
an MDP with relatively few states, our strategy is to consider
only a small number of all possible states of the system, and
simplify the probabilistic structure of the evolution of these
states as a result of choosing different parking policies.

The key to reducing the number of states in the MDP is
the insight that a particular parking policy introduces a set of
“attractor” states that the system converges to in the absence of
passenger arrivals and cars completing service. These states are
exactly the parking positions specified by the parking policy,
and it is them that we choose to use as states of an aggregated
MDP. However, since the system does not jump between such
states instantly, but rather moves smoothly between them, we
define the system to be in a particular state represented by a
parking position not only when the system has assumed that
position, but also when it is in the process of moving towards
it.

In order to further reduce the number of states, we will
assume that a parking position for the case of up-peak traffic is
specified by the pair of numbers (L,U), where L is the number
of cars parked at the lobby, while U is the number of cars
parked at the upper floors. We further make the assumption that
the U cars are spaced evenly along the height of the building.
Thus, once the pair (L,U) is given and the height of the building
is known, the corresponding detailed parking position x can
be generated by parking L cars at the lobby and distributing
the remaining U cars along the height of the building. As a
consequence, we can define the immediate cost Q(L,U) of
a state (position) (L,U) as the corresponding immediate cost
(waiting time) of the complete position x: Q(L,U)

.
= Q(x).

Under the proposed notation for parking states, the decision
that has to be made when C free cars are available is how many
of them should be sent to the lobby (L), and how many should
be sent to the upper floors (U =C−L). For example, if there are
three free cars available, the possible decisions are (0,3), (1,2),
(2,1), and (3,0). One very compact representation of such a
policy is the Nc-dimensional vector of values LC, C = 1..Nc,
whose C-th element specifies how many cars should be parked
at the lobby when C of all cars are free.
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Fig. 2. Trellis structure for the embedded Markov decision process of a
building with four shafts. The states in the same column represent different
choices for allocating the same number of free cars into ones parked at
the lobby, and others parked at the upper floors. Solid lines correspond to
transitions resulting from passenger arrivals, while dashed lines correspond
to cars returning from service and joining the set of free cars. One starred*
attractor state is identified as the optimal positioning for each quantity of free
cars.

In a building with Nc shafts, the number of possible policies
is Nc!, which makes it impractical to experimentally compare
them and select the best overall parking policy. Such an experi-
mental selection is further complicated by the stochastic nature
of the arrival process. In order to meaningfully compare the
statistical performance of two or more policies, they would have
to be executed over many possible scenarios (sequences of pas-
senger arrivals), which is an added factor to the computational
burden of an already exponential computation. Instead, we
employ dynamic programming on an MDP model describing
the probabilistic structure of the state evolution of the system.
As noted, the states in this model are aggregated “attractor”
states corresponding to pairs (positions) (LC,UC) such that
LC + UC = C, C = 1..Nc. There are (Nc + 2)(Nc + 1)/2 such
states for a building with Nc shafts.

We organize the states in a regular structure known as
trellis in dynamic programming problems, and specify the
probabilities of transitioning between such states as a function
of a particular parking policy. Fig. 2 shows the organization of
15 states for a building with 4 shafts in a trellis, along with the
transition structure for one particular policy, [1,1,2,2]. Each
state in the trellis is labeled by two numbers, the first of which
is L, and the second U . The two numbers for states in the
same column of the trellis add up to the same number of free
cars C, and thus such states correspond to the possible parking
decisions when C cars are available. States in the same row
have the same number of cars parked at the upper floors of the
building, regardless of the number of free cars available. The
state (0,0) is present in the trellis as well, even though there
is no decision to be made in this case, since there are no free
cars to park.

The chosen parking policy determines the transitions that the
MDP model would follow under the influence of the passenger
traffic and the operation of the call scheduling algorithm (which
works independently of the parking policy and can be arbitrary).



Solid lines depict transitions due to arrival of new passengers —
such arrivals reduce the number of free cars, and the transitions
are from left to right. The dashed lines depict transitions
corresponding to cars returning from service — such events
increase the number of free cars, and the transitions are from
right to left. Finally, there are transitions between states within
the same column — they exist because only one state within
a column is stable, and when the cars end up in any of the
other states in that column, the parking subsystem would start
moving the cars towards the parking location. We would call
such transient states sliding states.

In theory, if all probabilities of the model were given (i.e.,
the transition probabilities for all policies, not only for the one
shown in Fig. 2), it should be possible to use policy iteration or
value iteration [7] in order to determine efficiently the policy
that minimizes directly the criterion stated above — the average
waiting times of all passengers over an infinitely long horizon.
In practice, finding the probabilities of cars returning from
service (shown in dashed lines in Fig. 2) proved to be very
hard. However, there is still a way to use only the left-to-right
transitions (shown in solid lines in Fig. 2) for determining
a suitable policy, if we amend slightly the criterion to be
minimized. Instead of minimizing the average waiting time
over an infinitely long horizon, we can choose to minimize
the cumulative waiting time for only the next C hall calls for
all states (L,U) such that L + U = C. While this results in
minimizing different criteria for the states in different columns
of the trellis, this is not a problem, because the selection of a
parking state is performed only among states within the same
column, whose optimization criterion is the same. We define the
optimization criterion for state s0 located in column C simply
as WC(s0) =<∑C

i=1 Q(si)>, where the expectation <> is with
respect to all possible trajectories of the system for the next
C arrivals, and si is the state of the system when the i-th call
occurs. The advantage of using this minimization criterion is
that a recursive definition exists between WC(s) and WC−1(s′),
where WC−1(s′) is the cumulative waiting time of the states s′ in
the next column in the trellis (the one to the right). In order to
see this dependency, consider what would happen if the system
is in state s = (L,U), such that L + U = C, and a new hall
call occurs. Since we are trying to determine whether s should
be chosen as the parking state when C cars are available, s is
a stable state under this assumption and the cars are at rest,
awaiting the next hall at their parking positions.

The next hall call occurs at one of the floors, according to the
arrival distribution of the building. This call incurs immediate
cost of Q(L,U), as defined above, and moves the system to a
state in the next column to the right, where one less free cars
are available. Depending on exactly where the call occurs, two
things can happen: either a parked lobby car is dispatched to
serve it, with probability Pl , or a car parked at the upper floors is
used, with probability Pu = 1−Pl . These probabilities are easy
to compute, if the arrival distribution of passengers is specified
in advance. These two events give rise to two transitions out of
s to the right column: in Fig. 2, the transition with probability

Pl leads to the state in the same row as s, and the transition
with probability Pu leads to the state one row below that of s.
Using these two probabilities, we can decompose WC(s) as

WC(L,U) = Q(L,U) + PlW ′C−1(L−1,U) + PuW ′C−1(L,U−1),

where W ′C−1(l,u) is the additional cost of the next C−1 calls
if the first of them occurs when l cars are parked at the lobby
and u cars are parked at the upper floors. Note that, in general,
W ′C−1(l,u) 6= WC−1(l,u), because WC−1(l,u) is the expected
cumulative cost starting from an ideally parked position for the
C− 1 cars, while W ′C−1(l,u) is the expected cumulative cost
of the C− 1 cars right after a car went into service, and the
remaining C−1 cars are not parked yet.

After both transitions, the further cost W ′C−1 incurred by
the system over the next C − 1 calls depends on whether
the transition was to the optimal state in the next column to
the right, or to a sliding state that would begin immediately
transitioning to the optimal one. The difference between these
two cases arises from the fact that if the transition was to
the optimal state, the cars would not move before the next
call, since they are already parked optimally, and the cost of
answering the next call would not depend on exactly when it
occurs. On the contrary, if the transition is to a sliding state,
the cost of answering the next call depends strongly on exactly
when it occurs — this cost is higher, if it occurs early and
the cars are not parked optimally yet, and lower, if they have
already assumed their optimal parking position.

We now return to the relationship between the additional
cost W ′C−1(l,u) of serving C− 1 calls if the system was left
with l + u cars, which are not optimally parked yet, and the
estimates WC−1(L,U) of the states in column C, each computed
under the assumption that (L,U) is the optimal parking state.
This relationship is straightforward if (l,u) is indeed the truly
optimal parking state — in this case, W ′C−1(l,u) =WC−1(l,u). In
all other cases, WC−1(L∗,U∗)≤W ′C−1(l,u)≤WC−1(l,u), where
(L∗,U∗) is the optimal state for C−1 cars. This is so, because
WC−1(L∗,U∗) ≤WC−1(l,u) for all states (l,u) 6= (L∗,U∗), by
virtue of (L∗,U∗) being the optimal parking state. In effect,
the system initially starts in a non-optimal state (l,u) with
cumulative cost-to-go WC−1(l,u) higher than that of the optimal
state (L∗,U∗), and proceeds toward that optimal state.

The expected cumulative cost-to-go of the non-optimal state
can be computed by quantifying this process of movement
towards the optimal state, after imposing some assumptions.
While sliding from the non-optimal state (l,u) towards the
optimal state (L∗,U∗), the system would go through a series
of intermediate states. We can define the cost-to-go for each
of them as w(t) .

= WC−1[s(t)], with s(t) sliding from (l,u)
to (L∗,U∗) such that s(0) = (l,u). Let the time necessary to
complete the parking move be T , i.e., s(T ) = (L∗,U∗). In this
case, w(t) = WC−1(L∗,U∗) for t ≥ T , and it is also true that
w(0) = WC−1(l,u).

We assume that the arrivals of passengers to the elevator
group are exponentially distributed with parameter λ, i.e. the
probability density on the time t until the next arrival is



P(t|λ) = λe−λt , t ≥ 0. The expected cost-to-go W ′C−1(l,u) of
the system sliding from (l,u) towards the optimal state (L∗,U∗)
with respect to the distribution of the next arrival then is

W ′C−1(l,u) =
∫ ∞

0
P(t|λ)w(t)dt =

∫ ∞

0
λe−λtw(t)dt.

In order to compute this integral, we assume that w(t) de-
creases linearly from w0 = w(0) = WC−1(l,u) to wT = w(T ) =
WC−1(L∗,U∗) over the interval (0,T ): w(t) = wT + (w0 −
wT )(T − t)/T , 0 < t < T . Under the chosen approximation
of w(t) for the interval 0 < t < T , the expected cost-to-go
W ′C−1(l,u) with respect to the time of the next arrival can be
computed by splitting the integral above over two intervals:

W ′C−1(l,u) = w0− (w0−wT )(1−e−λt )
λT .

The quantities w0 and wT already incorporate in them the
expectation over the location of the next arrival and the
locations and times of the next C−2 arrivals, which turns the
expression

WC(L,U) = Q(L,U) + PlW ′C−1(L−1,U) + PuW ′C−1(L,U−1),

along with the approximations for computing W ′C−1(L− 1,U)
and W ′C−1(L,U−1) just derived above into a convenient recur-
sive formula for the estimation of the cost-to-go of all states in
the trellis. If reverse probabilities are ignored, as discussed, the
state (0,0) is terminal for the trellis and its cost-to-go could
be backed up by means of the recursive formula, which is
essentially a Bellman back-up of the long-term cost of the states
[7]. The cost-to-go of state (0,0) can be arbitrary, and for the
sake of easier computation is set to zero.

As the process of backing-up proceeds from state (0,0)
towards columns with more and more free cars (from right to
left), the optimal parking location for each number of free cars
can be determined by comparing the costs-to-go of all states
in the same column of the trellis. The optimal state then is
(L∗C,U

∗
C) = argmin(l,u)|l+u=C[WC(l,u)].

It is essential that the optimal policy be determined as soon
as the cost-to-go of all states in column C is backed up and
before any back-ups in column C + 1 are performed, because
the back-ups for the states in column C + 1 would need the
optimal state for column C in order to determine which of the
states in that column is stable and which ones are sliding. The
whole process of backing up of the cost-to-go of parking states
and parking policy determination is described in the algorithm
DYNAMICPOLICY below. As discussed, this algorithm returns
a vector of numbers LC, C = 1..Nc, each of which prescribes
how many cars should be parked at the lobby if C free cars
are available. This algorithm also makes use of the immediate
cost Q(l,u) as overloaded above to take two scalar arguments
l and u rather than a single vector argument x. The branching
probabilities Pl and Pu are assumed to have been pre-computed
and stored in each state. The arguments of the algorithm are the
number of cars Nc and the overall arrival rate at the building
λ.

The algorithm DYNAMICPOLICY uses the externally com-
puted function Time(C,u1,u2) which returns the time for the

Algorithm 2 L[1..Nc]=DYNAMICPOLICY(Nc, λ)
1: s[0][0].W := 0
2: s[1][0].W := Q(1,0)
3: s[1][1].W := Q(1,1)
4: U [1] = 0
5: L[1] = 1
6: for C := 2 to Nc do
7: wT := s[C−1][U [C−1]].W
8: mincost := ∞
9: for u := 0 to C do

10: if u = C then
11: Wu := 0
12: else
13: if u = U [C−1] then
14: Wu := wT
15: else
16: w0 := s[C−1][u].W
17: T := Time(C−1,u,U [C−1])
18: Wu := w0− (w0−wT )(1− exp(−λT ))/(λT )
19: end if
20: end if
21: if u = 0 then
22: Wl := 0
23: else
24: if u−1 = U [C−1] then
25: Wl := wT
26: else
27: w0 := s[C−1][u−1].W
28: T := Time(C−1,u−1,U [C−1])
29: Wl := w0− (w0−wT )(1− exp(−λT ))/(λT )
30: end if
31: end if
32: s[C][u].W := Q(C−u,u) + s[C][u].PlWl + s[C][u].PuWu
33: if s[C][u].W < mincost then
34: mincost := s[C][u].W
35: U [C] := u
36: end if
37: end for
38: L[C] := C−U [C]
39: end for
40: return L[1..Nc]

cars to move from the configuration corresponding to the
state in row u1, column C of the trellis to the configuration
corresponding to the state in row u2, column C of the trellis.
The algorithm starts computation from the second column of
the trellis from the right, assuming that when only one car is
available, it is always optimal to leave it parked at the lobby.
This is true if at least half of the passengers arrive at the lobby.

The overall complexity of the computation is very low —
O(C2), since the cost-to-go has to be computed only once per
state, involving a constant number of operations per state, and
there are (C + 1)(C + 2)/2 states in the Markov chain. The
policy has to be recomputed every time the estimate of arrival



rate changes significantly, which typically occurs at relatively
long intervals, e.g. 5 or 15 minutes in modern elevator control
systems.

We tested experimentally the performance of policies discov-
ered by the dynamic programming algorithm described above
on the same buildings used for down-peak traffic, with the
statistical properties of the passenger flow reversed, so as to
correspond to up-peak traffic. This time, 80% of the traffic
originated at the lobby with destination the upper floors, 10%
originated at the upper floors with destination the lobby, and
the remaining 10% was traffic among the upper floors only.
The arrival rates at the upper floors were uniform.

The comparison was performed with respect to another
parking algorithm whose approach is to try to guarantee that a
pre-specified number of cars are parked at the lobby at all times,
so that they can intercept arrivals there. As soon as the number
of cars parked at the lobby falls below that number, one of the
remaining cars is selected to go to the lobby, either immediately,
if it is currently free, or after completing the calls assigned to
it, if it is busy. The deficiencies of this approach is that it is
not clear how to determine the optimal number of cars to be
parked at the lobby, and furthermore, the remaining free cars
are not distributed optimally, but rather left parked where they
delivered their last passenger. The parking policy found by the
dynamic programming algorithm was able to improve waiting
times in a manner much similar to that exhibited in down-
peak traffic — savings at low and medium rates reached 82%
(Fig. 3), and as the arrival rate increases, the parking solution
should be turned off.
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Fig. 3. Waiting times, in seconds, of two schedulers with and without parking,
in both up-peak and down-peak traffic. Each dot represents an hour simulation
in a different building type and arrival rate. Differences in waiting time in the
range from 0 to 25 seconds are due to the parking controller, while differences
above 25 seconds are due to the schedulers. (The parking controllers do not
operate in this range, because there are no free cars to park for such building
types, traffic patterns, and arrival rates.)

V. CONCLUSIONS AND FUTURE RESEARCH

The problem of optimally parking elevator cars in two
extremal types of passenger traffic was considered, and several
solutions were proposed. For the case of down-peak traffic,
distributing cars along the height of the building so as to
minimize the waiting time of only the next passenger resulted in
immediate savings in average waiting time for low and medium
rates. While in most cases it is not possible to analytically
find the optimal placement of cars, a relatively fast numerical
optimization routine can be employed to find it.

Minimizing the waiting time of only the first passenger is
not sufficient for the case of up-peak traffic, where the main
question is how many cars should be kept at the lobby, given
the height of the building and the overall arrival rate. The
proposed solution to the problem of optimal parking for a group
of elevators in up-peak traffic was based on the representation of
the system as a Markov decision process with very few states
corresponding to candidate parking locations, and a dynamic
programming algorithm for minimizing the expected waiting
time of several future passengers on a longer, but still limited
horizon. This solution was able to capture the dependency
between the arrival rate and the number of cars to be parked at
the lobby, yielding very good performance for low and medium
rates.

The main direction for improving the solution is to incorpo-
rate in the model the probabilities of events corresponding to
cars returning from service. These probabilities are currently
completely ignored, which requires a change in the criterion
to be optimized by the dynamic programming algorithm. As a
result, the optimal parking position for states with few cars is
determined on the basis of the expected waiting time over a
relatively short period. Furthermore, the ignored probabilities
can be significant, and a reasonable approximation to the return-
from-service probabilities is very likely to improve the parking
policy.
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