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Abstract
Psychophysical experiments have shown that the human visual system is sensitive to visual stim-
uli only within a certain spatio-temporal window. the location of a moving image in the spatio-
temporal space is determined by the spatial frequency content of image regions and their velocity.
We present a novel compressed domain measure of spatio-temporal motion activity of a video
segment that provides us with a criteria on how fast a video segment can be played within human
perceptual limits. Alternatively, this measure allows us to determine the spatio-temporal filter-
ing required for an acceptable playback of a video segment at a given fast playback speed. The
spatio-temporal activity measure is computed in the compressed domain and allows for gener-
ation of instant skims through video content at any point forward using adaptive fast playback.
The adaptive fast playback method using spatio-temporal complexity is based on early vision
characteristics of the human visual system only, and thus independent of content type and se-
mantics so it is applicable in a wide range of applications. It is best suited for low temporal
compression summarization. A visual of the content is preserved at all times; hence the temporal
continuity of the action is preserved, and the risk of missing an important event is eliminated
as well. The user can switch between skim mode and regular playback at anytime or change
the speed-up ratio of the fast playback. Our simulations on various types of video indicate that
the presented video skimming and summarization method is effective and useful. Finally, the
adaptive fast playback framework can be extended to include other inputs such as face detec-
tion, dialog detection, or semantic annotation. It can also be integrated with other summarization
methods that try to capture the semantics.
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ABSTRACT
Psychophysical experiments have shown that the human visual
system is sensitive to visual stimuli only within a certain spatio-
temporal window. The location of a moving image in the spatio-
temporal space is determined by the spatial frequency content of
image regions and their velocity. We present a novel compressed
domain measure of spatio-temporal motion activity of a video
segment that provides us with a criteria on how fast a video
segment can be played within human perceptual limits.
Alternatively, this measure allows us to determine the spatio-
temporal filtering required for an acceptable playback of a video
segment at a given fast playback speed. The spatio-temporal
activity measure is computed in the compressed domain and
allows for generation of instant skims through video content at
any point forward using adaptive fast playback. The adaptive fast
playback method using spatio-temporal complexity is based on
early vision characteristics of the human visual system only, and
thus independent of content type and semantics, so it is applicable
in a wide range of applications. It is best suited for low temporal
compression summarization. A visual of the content is preserved
at all times; hence the temporal continuity of the action is
preserved, and the risk of missing an important event is eliminated
as well. The user can switch between skim mode and regular
playback at anytime or change the speed-up ratio of the fast
playback. Our simulations on various types of video indicate that
the presented video skimming and summarization method is
effective and useful. Finally, the adaptive fast playback framework
can be extended to include other inputs such as face detection,
dialog detection, or semantic annotation. It can also be integrated
with other summarization methods that try to capture the
semantics.

Keywords
Video summarization, skimming, video content analysis, human
visual system.

1. INTRODUCTION
In recent years, several video summarization approaches have
been introduced. One of the approaches is based on reducing
redundancy by clustering video frames and selecting
representative frames from clusters [2][3][4]. Another approach is
using a measure of change in the video content along time, and
selecting representative frames whenever the change becomes
significant [5][6]. Finally, there have been approaches based on
assigning some significance measure to the parts of the video –
usually based on criteria inspired from the human visual system –
and subsequently filtering less significant parts [7].

In terms of the presentation style, we can identify two main
categories of video summaries: still image-based summaries, and
motion summaries. Many of the above approaches can be used to
generate either of these types of summaries. Various other
visualization options such as video mosaics have also been
proposed.

We have previously presented an adaptive fast playback-based
video summarization framework [10][9]. The playback rate was
modified so as to maintain a constant “pace”  through out the
content. We assumed the motion activity descriptor, which is the
average magnitude of the motion vectors in mpeg video, to
provide a measure of the “pace”  of the content. This approach can
be viewed as a bandwidth allocation scheme, where we are given
a measure of the “visual bandwidth”  of the video and a channel
bandwidth defined by the human visual system. Since the motion
activity measure we use is linearly proportional with the playback
rate of the video, we can linearly increase or decrease the visual
bandwidth of the video by changing the playback rate. Hence, we
achieve the optimum time-visual bandwidth allocation by
adaptively changing the playback rate so as to have a constant
motion activity during the playback of the video.

In this paper, we elaborate on the above approach first by
providing a more refined investigation of, and a measure for the
“visual bandwidth” , or the visual complexity of a video segment.
The visual complexity of a scene, which determines how fast the
eye can follow the flow of action, is a function of spatial
complexity as well as the temporal complexity. We introduce a
novel compressed domain feature that combines these two factors,
and base it on proposed models of the human visual system.

Equipped with a measure of visual complexity of a video scene,
we present two alternative ways of using it in video skimming.
One use is that, given a video content, we can determine the
maximum rate at which each segment can be played back. The
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other use is in determining how we need to filter the content to
play it back at a given rate. This second approach makes use of
the fact that the visual complexity is partly a function of the
spatial complexity, which can be reduced by filtering out high
frequency spatial components, e.g. spatio-temporal smoothing.

Note that the adaptive playback approach is essentially different
from assigning a significance score to video segments. Although
possible to extend that way, we do not use the visual complexity
in deciding to exclude or include video segments, in a 1 or 0
fashion. For example, a low visual complexity does not mean that
a certain segment is dispensable, but means that it requires less
time to convey through the visual system.

Also note that the visual complexity measure does not imply any
semantic inferences. The playback rate is adapted only to the low-
level physical characteristics of the content and is based on the
early vision stage of the human visual system, rather than the
higher cognitive stages. In this aspect, adaptive fast playback-
based video skimming is closer to a presentation method than a
semantic content analysis approach. Hence, it is complimentary to
any other summarization method. However the video to be
presented is selected – either the full video or a summarized
subset, it can be effectively viewed using adaptive fast playback.

We can illustrate the difference between the early vision approach
of adaptive fast playback and other content based video
summarization methods with a parallel example from image
domain. For instance, a close-up on a key human face, or a text
image with large letters and a white background can be
semantically much more important than a high detail natural
background. But the former two may require far fewer bits to
represent than the last. Similarly, the adaptive playback method
may assign more playback time to a semantically less important
but visually complex scene, compared to a semantically more
important but visually less demanding scene. Thus, our goal in
this paper is determining the most efficient presentation for a
piece of video through accelerated playback, regardless of its
semantic content. We will discuss the integration with semantic
summarization methods at the end of the paper.

The time compression ratio that can be achieved through adaptive
fast playback is relatively smaller than the methods where you
select a much smaller subset of the original content. This method
is most suitable when the required time-compression ratio is not
too high, and preserving the visual continuity is a desired feature.
The instant availability of such a skimming feature during a
regular playback is useful in seeking through a video segment and
zeroing in on the parts that the user wants to see in detail.
Preserving the continuity of the activity is also a desired feature in
some applications. In certain cases, the user may prefer to flash
through a video and see for him or herself what it is about –
similar to thumbing through a book, rather than relying on an
automatically selected set of disconnected pieces. Finally, fast
playback can be used in cases where the reliability of automated
methods is not sufficient or the risk associated with missing a
desired segment is very high, e.g. in certain surveillance
applications.

The visual complexity measure we present in this paper is an
extension of the MPEG-7 motion activity feature so as to include
the spatial domain as well. We use the terms visual complexity
and spatio-temporal complexity interchangeably in the rest of the
paper.

2. ADAPTIVE FAST PLAYBACK
We can view the adaptive changing of the playback frame rate of
a video stream as time warping. We define ),,(0 tyxV  as the

original video in continuous time, and ),,(1 tyxV  as the time-

warped version of it with:

))(,,(),,( 01 twyxVtyxV =
where ],0[],0[:)( 01 TTtw → ,

00  ofduration  : VT , 11  ofduration  : VT ,

is a warping function on the time axis. The original video is
sampled at r frames per second, resulting in the discrete stream

),,(0 ffyxV .

One way of implementing the adaptive playback rate is by
changing the actual playback frame rate of the video. In this
implementation, we compute the time instants that each frame of
the original video 0V  should appear in the time warped video 1V ,

and display them at those times, resulting in a non-uniform time
sampling of the time warped video ),,(1 tyxV . However, most

practical video players do not support such a non-uniform
playback rate. Another implementation problem is the high
playback frame rates that would be required for speeded-up
segments with this approach.

The second approach is to modify the effective playback rate by
adaptively dropping frames, but playing the final video at a fixed
frame rate. In this version, the presented video is uniformly
sampled, but the original video ( 0V ) is non-uniformly sampled. A

quantization-like effect causes the achieved frame rate and the
desired frame rate to be different at times, unless interpolation of
frames is used.

3. HUMAN VISUAL SYSTEM AND
VISUAL COMPLEXITY
The speed at which you can playback a segment of video with
acceptable comprehension of its content is a function of number
of factors, possibly including the scene complexity, semantic
elements in the scene, the familiarity of those elements and the
scene, the processing capacity of the visual system, etc. One way
of modeling the problem is through the definition of such a
“ frame processing time” of the human visual system. However, it
is very difficult to model the semantic and the memory parameters
in this function. An alternative approach is based on early vision
models proposed in psychophysics area.

Research in psychophysics has shown that the human visual
system is sensitive to stimuli only in a certain spatio-temporal
window, called the window of visibility [1]. That is, we can not
see beyond a certain spatial resolution or temporal frequency
limit. Watson and Ahumada postulate that, for a time sampled
video signal to be perceived the same as its continuous version,
the two signals should look the same within the window of
visibility, in the transform domain. This result gives us a trade-off
relationship between the spatial bandwidth and the velocity of
visual stimuli, i.e. 2-D images in the case of video, for them to
preserve the same visual quality.

To illustrate these points, let us consider a 1-D signal in linear
motion. Figure 1 shows an impulse signal moving left with speed



v, such that tvx ⋅= . This corresponds to a line in the x-t space.
The Fourier transform of this signal is also a line, passing through

the origin, with slope 
v

1
−  [1]. In general, a 1-D signal translating

in time has its spectrum lying on a line passing through the origin.
In the case of a band-limited signal with a bandwidth of U, the
spatio-temporal transform is a line extending from ),( UvU ⋅−  to

),( UvU ⋅−  (Figure 2).

(a) (b)

(c)

Figure 1. (a) An impulse signal, (b) Translating in time, (c) Its
Fourier transform in spatio-temporal frequency domain.

(a) (b)

Figure 2. (a) A band-limited signal, (b) Its Fourier transform
when it is translating with speed v.

When a moving signal is sampled in time, replicas of the Fourier
transform of the original signal are created on the ω  (temporal
frequency) axis in the transform domain, each of which are sω
apart, where sω  is the temporal sampling frequency. According to

[1], the sampled signal is perceived the same as the continuous
version, as long as the replicas lie outside the window of visibility
(Figure 3). The replicas lie outside the window of visibility as
long as vUls +≥ ωω , where lω  is the edge of the window of

visibility on the temporal frequency axis.

Figure 3. Temporally sampled band-limited signal, in Fourier
domain.

Another consideration is the temporal aliasing due to sampling.
The sampling frequency sω  has to be at least Uv ⋅⋅2  to avoid

aliasing. A comparison of the aliasing and the window of
visibility constraints is illustrated in Figure 4. Aliasing is a
problem in computer graphics animation as well, and it is
frequently handled using spatio-temporal smoothing (motion blur)
[11].

(a) (b)

Figure 4. Various combinations of window of visibility (wl) and
signal bandwidth; (a) No temporal aliasing, (b) With temporal
aliasing.

In the above discussion, we see the temporal bandwidth of the
visual stimuli as the limiting factor on temporal sampling
frequency. We stated that the temporal bandwidth of a translating
1-D signal is given by Uv ⋅ . This is better illustrated in Figure 5.

Figure 5. A translating 1-D sinusoid and the derivation of its
temporal frequency.

In the 2-D case, we show that the temporal frequency of a moving
sinusoid is given by the dot product of the frequency vector and
the velocity vector.



Figure 6. A 2-D sinusoid with a frequency vector f perpendicular
to the wave front, and a motion vector v showing its translation
velocity.

Figure 6 shows the sinusoid )
4
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ππ + , where the

origin is at the upper left corner, and positive y-axis is downward.
Each 1-D cross-section of a 2-D sinusoid is a 1-D sinusoid. For
the Figure 6, the frequency of the sinusoid along the x-axis is

2

1=xf ; and the frequency along the y-axis is 2=yf . We

represent this sinusoid with a frequency vector )2,5.0(=f
�

, which
points in the highest frequency direction (the gradient). Let the
motion vector describing the translation of this sinusoid be given
as ),( yx vv=v

�
. Then we can show that the spatial frequency of

the 1-D cross-section in the ),( yx vv=v
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 direction is,
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Hence, the temporal frequency of the translating 2-D signal with

spatial frequency f
�

 and velocity v
�

 is given by vfv
���

⋅=||vf . We

define this product as our spatio-temporal complexity (or visual
complexity) measure. In the following section, we show the
computation of a compressed domain feature based on this result.

4. COMPUTATION OF THE SPATIO-
TEMPORAL COMPLEXITY IN
COMPRESSED VIDEO
Compressed domain algorithms and features are attractive because
of significant computational, buffering, and storage gains. In
many real life applications, compressed domain solutions are the
only viable option. In this section, we develop a compressed
domain implementation of the visual complexity feature that we
have described. We consider Mpeg-1/2 compressed video, or
similar compression formats where we have DCT blocks and
motion compensation vectors.

4.1 Spatio-temporal Complexity From DCT
In the previous section, we showed that the temporal frequency of

a translating 2-D sinusoidal grating is given by vf
��

⋅ . The basis
functions of the DCT transformation are in the form;
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which is the multiplication of two 1-D sinusoids with frequencies
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 (Figure 7), whereas a 2-D sinusoidal grating with a

frequency xf  in the x direction and yf  in the y direction is

represented as )22cos( y
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Figure 7. DCT basis images for an 8x8 block.

Using the identity
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Thus, each DCT basis is a superimposition of two 2-D sinusoids,

one with spatial frequency )
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(Figure 8). Then the temporal frequencies (or the

spatio-temporal complexity) resulting from the ),( yx kk  DCT

coefficient and a motion vector ),( yx vv=v
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 are;
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which are in cycles-per-block units since ),( yx kk  have that units.

To convert the frequency into cycles-per-frame, we convert
),( yx kk  into cycles-per-pixel by dividing by 8 (block size). In

addition, we use the absolute values || 1
�  and || 2

�  in our

computations because the sign of the frequency is irrelevant in

one dimension. The 
2

1  factor in the DCT expansion into sum of

sinusoids is also irrelevant since all the terms have the same
factor. Hence the final form of the spatio-temporal complexity
terms contributed by each DCT coefficient is;

161

yyxx vkvk
�

+
= , 
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yyxx vkvk
�

−
=  cycles/frame;

Each DCT coefficient contributes a value equal to its energy to
the bins corresponding to 1

�  and 2
�  in the spatio-temporal

complexity histogram, as will be described in following sections.

  

Figure 8. The two 2-D sinusoids that make up a DCT basis when
summed up.

4.2 Motion Vector and DCT Estimation
Compressed domain motion compensation vectors are computed
with the goal of maximizing compression efficiency and not the
prediction of the real motion, making the motion vectors
unreliable. Spurious vectors are common especially if the encoder
is not well optimized. In order to eliminate spurious motion
vectors, we first discard low-texture blocks since the block
matching, which is used in finding the motion vectors, is less
reliable for those blocks [12]. We implement this as thresholding
of spatial bandwidth of each block, which we already compute for
the visual complexity measure. Note that low-texture, i.e. low
spatial bandwidth, blocks are expected to have low visual
complexity, hence the risk of losing critical blocks is minimal. We
then apply median filtering to further eliminate spurious motion
vectors. We use interpolation to fill in the motion vector
information for intra-coded (no motion vector) macroblocks.

Fitting a global motion model can also further eliminate spurious
motion vectors but would also eliminate foreground object
motion. However, if the application permits, global motion fitting,
especially through iterated weighted least squares, can be used to
increase the reliability of the motion vector field [13]. This would
also eliminate the problem of intra-coded macroblocks. In the
future, we want to treat background and foreground motion

separately, especially in the context of human visual system’s
tracking of moving foreground objects.

We have the DCT coefficients for I-frames but no motion vectors.
Similarly, we have the motion vectors for the P-frames, but the
DCT coefficients for the motion residue only. We can compute
the DCT coefficients of P frame blocks by applying motion
compensation or estimate without decoding [14]. An alternative
solution is by considering the motion vectors from the I-frame to
the following P (or other) frame as the motion of blocks on a non-
regular grid in the I-frame. Then we can interpolate the motion
vector field or fit a parametric model, to obtain the motion vectors
for the I-frame blocks. This is an easier and faster approach.
However, foreground object motion can be lost if a parametric
model is fit to the irregular motion field.

4.3 Spatio-temporal Complexity of a Video
Segment
We define both a histogram-based measure and a single number
measure for the visual complexity. For each macroblock, we
compute the spatio-temporal complexity contribution ( 1

�  and

2
� ) for each DCT coefficient, and construct a histogram of the

complexity distribution. We compute the complexity histogram
for the frame by averaging the macroblock complexity histograms.
The averaging can be performed over a number of frames for a
video segment complexity as well, if required by the application.
The spatio-temporal complexity histogram enables us to compute
the energy that lies above a given temporal frequency. This will be
used in computing the playback rate for each video frame or
segment so that the quality loss is the same over all frames of the
video.

A more compact measure can be derived when a histogram is too
complex for the application. The average or a certain percentile
can be used as a single representative figure for the spatio-
temporal complexity. The spatio-temporal complexity histogram
is analogous to the power spectrum, while its single number
alternative is similar to a bandwidth measure.

The visual complexity measure is, in fact, an approximation of the
temporal bandwidth of a video segment.  Ideally, the temporal
bandwidth can be computed through a 3-D FFT or DCT.
However, this is impractical due to the computational complexity
and the buffer requirements. The piece-wise linear motion
assumption in using motion vectors allows us to estimate the
temporal bandwidth easily in compressed domain.

Note that, the estimated temporal bandwidth in the form of spatio-
temporal complexity may be higher than the highest possible
frequency given the temporal sampling rate. This is due to a
number of factors such as the error in motion vectors, the low
resolution of motion vector field (block based, not optic flow), the
block motion residuals, the linear motion assumption over a
number of frames, etc.  For example, the car in Figure 9 moves at
around 10 pixels per frame, which is very large compared to its
size. Indeed, the spatio-temporal complexity in that area is as high
as 1.6 in some macroblocks, where 0.5 is the temporal aliasing
limit. However, the spatio-temporal complexity is still a good
approximation and an intuitive indicator of the visual scene
complexity as it combines two important visual complexity
components, the spatial detail and the motion activity level of a
video frame.



 
(a) (b)

 
(c) (d)

Figure 9. (a) Frame 1284 from MPEG-7 test video speed5, (b)
The motion vectors, (c) The motion activity image, (d) The spatio-
temporal complexity image.

5. ADAPTIVE FAST PLAYBACK METHOD
Under the right conditions, the human visual system can see
spatial resolutions up to 60 cycles/degree [15]. However, this
number varies by the luminance, the contrast and the foveal
location of the stimuli. Watson et. al. report spatial resolution
limits of 6 to 17 cycles/degree, which reflect the imperfect
lighting and contrast settings that is more likely to be found in
daily life [1]. The temporal frequency limit reported under the
same conditions is around 30 Hz, which is comparable to TV (25
or 30) and film (24) frame rates.  The recommended viewing
angle (horizontal) is about 10° for standard resolution TV and 30°
for HDTV, which correspond to viewing distances of 8 and 3
screen heights, respectively (Figure 10). Since the horizontal
screen resolutions are 720 (360 cycles) and 1920 (960 cycles),
respectively, we have spatial resolutions around 30 cycles/degree.
The VCD format has horizontal and vertical resolutions (352x240
NTSC Mpeg-1) that are almost half the DVD (720x480 NTSC
Mpeg-2), and is accepted as close to VHS quality. We will take
30 cycles/degree as the high-quality spatial resolution limit
(DVD), 15 cycles/degree as acceptable quality resolution (VHS)
and 7 cycles/degree as low-end acceptable resolution (Watson et.
al.).

Figure 10. Conversion between angular and distance units for
resolution computations.

We will take the original frame rate of the video as the visual
temporal frequency limit lω  because it is close enough to the

estimated real value, and is determined considering the human
visual system. Also, it defines the highest temporal frequency
allowed in the original content. Under this condition, the highest
temporal frequency allowed by the window of visibility constraint
is equal to the Nyquist frequency for the original playback frame
rate. For example, a DCT block that has significant energy at one
of the (8, n) or (m, 8) coefficients can have only 1 pixel/frame
motion in that direction. In general;

2

1
1 ≤�  and 

2

1
2 ≤�  , hence 8|| ≤± yyxx vkvk ,

where ),( yx kk , 8,1 ≤≤ yx kk , is the DCT coefficient number.

This can be interpreted as an available spatial bandwidth, given
the block motion. As a result, when the video playback is speeded
up the motion vectors are scaled up and the allowed spatial
bandwidth shrinks proportionally. Given the spatio-temporal
complexity of a video segment, the maximum speed-up factor it
can be played back with before temporal aliasing is,

complexity temporalspatio:      ,
2

1 −≤ ω
ω

f .

As mentioned earlier, sometimes the original spatio-temporal
complexity figure is above the aliasing limit, as in Figure 9. We
can still see the overall object, although we may need to slow
down the video to be able to see the details. In real life, the eyes
track the objects in attention, decreasing the effective speed and
increasing the allowed spatial resolution at a given speed.

In cases where the video is to be played back at a rate higher than
indicated by the spatio-temporal complexity, spatio-temporal
filtering (motion blur) needs to be applied to avoid aliasing. In
this lossy speed-up case, the spatio-temporal complexity
histogram allows the computation of the energy that has to be
filtered out at a given playback frame rate. Then, all the parts of
the video can be speeded up so as to have the same level of loss
through out the whole video. If the simpler, single number spatio-
temporal complexity measure is used, video segments are speeded
up inversely proportional with their spatio-temporal complexity
values.

The spatio-temporal smoothing is a filtering operation in 3-D
space, consisting of spatial and temporal dimensions. Temporal
filtering is achieved by a weighted average of buffered frames in
the MPEG decoder. The filtering removes the part of the video
signal that lies outside the window of visibility, which in our case
is equivalent to the aliasing limits. Since the temporal bandwidth
of the video segment is the product of the spatial bandwidth and
the motion, we can reduce the temporal bandwidth by spatial
filtering as well as temporal smoothing. Techniques like coring
allow for efficient compressed domain spatial filtering of video
[16]. In applications that require low complexity, the unfiltered
video can still be used though with some artifacts.

Another application dependent modification that can be employed
is the smoothing and/or quantization of the spatio-temporal
complexity curve for the video sequence. In certain cases the
continuous change of the playback rate is not feasible or desirable.
In these applications, the playback rate can be determined for a
given minimum length of time (or e.g. for each shot). Further, the
allowed playback rates can be limited to a set of predetermined
values as in commercial video and DVD players.



We have also described a practical implementation of playback
rate computation through accumulation and thresholding of the
motion activity in [10], which is applicable for spatio-temporal
complexity as well. Further details of the adaptive fast playback
method are described in that reference.

6. DISCUSSION AND CONCLUSIONS
We presented an intuitive measure of visual complexity of a video
segment that combines the spatial complexity and the amount of
motion in the scene. We described a framework for skimming
through video segments using visual complexity and adaptive fast
playback.

The spatio-temporal complexity is a superset of the motion
activity feature (See Figure 11) we presented in [10]. It
degenerates to motion activity when the spatial complexity of the
scenes is the same for all the frames in the video. Indeed, we
mentioned in [10] that adaptive fast playback using motion
activity is especially successful when the background is fixed and
the foreground motion is not too complex, such as in many
surveillance applications. The spatio-temporal complexity extends
the motion activity by introducing the scene complexity as a
variable. However, in certain applications that we used motion
activity for, such as sports highlights detection [8], we are
primarily interested in the motion itself, hence the spatio-temporal
complexity measure does not provide an advantage (See Figure
12).

The presented video skimming method can be integrated with
other video content analysis and summarization methods that try
to extract the semantic content. The trivial way of integration is by
using adaptive fast playback as the final visualization step.
Conversely, adaptive sub-sampling of frames using spatio-
temporal complexity can be used as an initial data reduction step
as well.

Another semantic extension we plan for the future is to
introducing semantic inputs to the adaptive playback rate system.
For example, the skimming system can be programmed to slow
down to normal playback for a few seconds on semantic cues such
as the detection of significant faces or a dialog start.

As a future improvement, we want to explore the use of a non-
uniform weighting across the frame. This can be a fixed
weighting, e.g. where the central parts are weighted more, as well
as a dynamic weighting scheme tuned to a measure of visual
attention. This would eliminate a side effect we observed in our
experiments, namely, the slowing of video for unnecessary details
like the clutter in the background. Another future work item to
eliminate unnecessary slow down of video is the identification of
‘ transitional scenes’  such as turning of a close-up head, etc. These
short scenes have high visual complexity, but are not really meant
to be perceived in full detail, hence the algorithm can be modified
to detect those scenes and skip without slowing down.
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(a)

(b)             (c)  

Figure 11.  (a) Motion activity and spatio-temporal complexity (STC) for a basketball video segment (MPEG7 testset). The two measures
are similar except the last part, which is a close up on a player. STC is lower here because the images are larger with less detail compared
to wide shots. (b) Frame 300, camera pan. (c) Frame 600, close-up on player.

   
Frame 500 Frame 1100 Frame 2220 Frame 2300

Figure 12. Motion activity and spatio-temporal complexity (STC) for a golf video segment (MPEG7 testset). STC is lower at the last part
(frame 2300) where the camera tracks the ball in the air, and around frame 500 where there is camera motion over a smooth green field.
STC overshoots when there are trees and bushes in the background during a pan around frame 2200.
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