MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Human-Guided Tabu Search

Gunnar W. Klau, Neal Lesh, Joe Marks, Michael Mitzenmacher

TR2002-09 December 2002

Abstract
We present a human-guidable and general tabu search algorithm. Ourguiding an exhaustive
algorithm.
AAAIO2

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright(© Mitsubishi Electric Research Laboratories, Inc., 2002
201 Broadway, Cambridge, Massachusetts 02139






Submitted January 2002. Revised and released May 2002.



Human-Guided Tabu Search

Gunnar W. Klau', Neal Lesh?, JoeMarks?, Michad Mitzenmacher3

1 ViennaUniversity of TechnologyAustria
guwek@ads.tuwien.ac.at
2 MitsubishiElectricResearcl aboratories201 Broadway, Cambridge MA, 02139
{lesh,mark$@merl.com
3 Harvard University, ComputerScienceDepartment
michaelm@eecs.haavd.edu

Abstract

We presenta human-guidabl@nd generaltabu searchalgo-
rithm. Ourwork expandson previousinteractie optimization
techniqueshat provide for substantialhumancontrol over
a simple, exhaustve searchalgorithm. Userexperimentsin

four domainsconfirm that humanguidancecanimprove the
performanceof taku searchand that peopleobtain superior
resultsby guiding a taku algorithm than by guiding an ex-

haustve algorithm.

I ntroduction

Interactive, or human-in-the-loop,optimization systems
have beendevelopedfor a variety of applicationsjncluding
space-shuttlechedulinggraphdrawing, graphpartitioning,
andvehiclerouting. While automaticalgorithmstypically
solve anoversimplifiedformulationof areal-world problem,
userscansteeraninteractie algorithmbasedon their pref-
erenceandknowledgeof real-world constraintsinteractive
optimizationalsoleveragegeoples skills in areasn which
peoplecurrently outperformcomputerssuchasvisual per
ception,stratagic thinking, andthe ability to learn. An ad-
ditional advantageof interactve systemss thatpeoplecan
bettertrust,justify, andmodify solutionsthatthey helpcon-
structthanthey canautomaticallygeneratedolutions.

Our work expandson the Human-Guidedsimple Search
(HuGSS)framework (Andersonet al., 2000), which pro-
videsthe usera greaterdegreeof control thanpreviousin-
teractive optimizationapproacheshut employs a relatively
weakoptimizationalgorithm. With HUGSS userscanman-
ually modify solutions backtrackio previoussolutions,and
invoke, monitor, andhalt anexhaustve breadth-firssearch.
More significantly userscan constrainand focus the ex-
haustve searchalgorithmby assigningmobilities whichwe
describebelow, to elementsof the currentsolution. Ex-
perimentshave shavn that humanguidancecan improve
the performanceof the exhaustve searchalgorithmon the
capacitated-ghicle-routing-withtime-windows problemto
thepointwheretheinteractize algorithmis competitive with
the best previously reportedalgorithms (Andersonet al.,
2000;Scott,Lesh,& Klau, 2002).

We presenta generalandhuman-guidabléatu searchal-
gorithm that senesasa superioralternative to the exhaus-
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tive searchalgorithmin HuGSS.Taku searchis a power
ful heuristicsearchalgorithmthat hasproven effective for
awide variety of problems(for an overvien seeGlover &
Laguna(1997)). While previousresearchon interactie op-
timization hasgenerallyaddresseéhdividual problemswe
shav thegeneralityof ourguidabletabu algorithmby apply-
ing it to four diverseoptimizationproblems.The algorithm
is guidablein that(1) it canbe constrainecdndfocusedwith
thesamemobilitiesmetaphousedin HUGSS(2) it controls
its own searchusingmobilities,which providesa naturalvi-
sualizationof thetalu searchand(3) its controlparameters
aremoreeasilyunderstandablthantheanalogousnesused
to fine-tunethe performancef automatidabu algorithms.

We describetwo experimentsdesignedo compareguid-
edtalu searchto guidedexhaustve searchandto unguided
(i.e., fully automatic)tabu search.The first experimentin-
cludeda total of seven testsubjectstwo domains,and 80
trials. The resultsindicatethat 10 minutesof guidedtaku
searchis comparabldo, on average,70 minutesof unguid-
ed talu search.Furthermore pur experimentsdemonstrate
thatguidedtalu searctsignificantlyoutperformsgguidedex-
haustve search.Our secondsetof experimentsnvestigates
if experienceduserscanimprove highly optimizedsolutions
producedby five hoursof taku-searchprecomputation We
shav that half an hour of human-guidedalu searchim-
provesthesesolutionsslightly morethan10additionalhours
of unguidedahu search.

Background
I nteractive Optimization

Interactive systemsthat leveragethe strengthsof both hu-
mansand computersmust distribute the work involved in
the optimizationtaskamongthe humanand computerpar
ticipants. Existing systemshave implementedhis division
of laborin avarietyof ways.

In someinteractive systemsthe userscanonly indirectly
affect the solutionsto the currentproblem. For example,in
interactve evolution, an approachprimarily appliedto de-
signproblemsthe computergeneratesolutionsvia biolog-
ically inspiredmethodsandthe userselectswhich solutions
will beusedto generateovel solutionsin the next iteration
(Sims,1991;Todd & Latham,1992).

Othersystemgrovide moreinteractvity by allowing the
usersto control searchparameter®r add constraintsasthe
searchevolves. Colganet al. (Colgan,Spence& Rankin,



1995) presenta systemwhich allows usersto interactvely
control the parameterghat are usedto evaluatecandidate
solutionsfor circuit-designproblems. Several constraint-
basedsystemshave beendevelopedfor drawving applica-
tions (Gleicher& Witkin, 1994; Ryall, Marks, & Shieber,
1997;Nelson,1985). Typically, the userimposegyeometric
or topologicalconstraint©n anemeging drawing.

Somesystemsllow moredirectcontrolby allowing users
to manuallymodify computergeneratedolutionswith little
or norestrictionsandtheninvoke variouscomputernalyses
on the updatedsolution. An early vehicle-routingsystem
allows usersto requestsuggestiongor improvementsafter
making schedulerefinementgo the initial solution (Water
s,1984). An interactive space-shuttleperations-scheduling
systemallows usersto invoke a repair algorithm on their
manuallymodifiedschedulego resole any conflictsintro-
ducedby theuser(Chienetal., 1999).

The human-guidedsimple search(HuGSS) framework
(Andersonetal., 2000)alsoallows usersto manuallymod-
ify solutions,but in additionit allows themto explicitly s-
teerthe optimizationprocessdtself. In this approachusers
invoke, monitor, and halt optimizationsas well as specify
the scopeof theseoptimizations. Userscontrol how much
effort the computerexpendson particularsubproblemsUs-
ers can also backtrackto previous solutions. HUGSSwas
utilized in aninteractive vehicle-routingsystem.Initial ex-
perimentswith this systemshaved that human-guidedp-
timization outperformedalmostall reportedvehicle-routing
algorithms. A morefocusedstudy examinedpeoples abil-
ity to guide searchin the variouswaysallowed by HUGSS
(Scott,Lesh,& Klau, 2002).

Following the HUGSS framework, do Nascimentoand
Eadesdevelopedan interactive layeredgraph-draving sys-
tem that provided mostof the functionality of HUGSSand
alsoallowed usersto addconstraintgo the problemat run-
time (Nasciment® Eades2001).Preliminaryexperiments
have shavn that peoplecanimprove automaticallygenerat-
edsolutionsusingthis system.

Tabu Search

Tahu searchis a heuristic approachfor exploring a large
solution space(Glover & Laguna,1997). Like other lo-
cal searchtechniquestalu searchexploits a neighborhood
structuredefinedon the solution space. In eachiteration,
tabu searchevaluatesall neighborsof the currentsolution
and moves to the bestone. The neighborsare evaluated
both in termsof the problems objective function and by
othermetricsdesignedo encouragenvestigationof unex-
plored areasof the solution space. The classic“diversifi-
cation” mechanisnthat encouragesxplorationis to main-
tainalist of “tabu” movesthataretemporarilyforbidden,al-
thoughothershave beendeveloped.Recenttabu algorithms
oftenalsoinclude“intensification” methodsfor thoroughly
exploring promisingregionsof the solutionspace(although
our algorithmdoesnot currentlyincludesuchmechanisms).
In practice,the generaltalu approachs often customized
for individual applicationsn myriadways(Glover & Lagu-
na,1997).

Algorithm
Example applications

We appliedour talu searchalgorithmto the following four
applications.

The Crossing application is a graph layout problem
(Eadest& Wormald,1994). A problemconsistof m levels,
eachwith n nodesandedgesconnectinghodeson adjacen-
t levels. The goalis to rearrangenodeswithin their level
to minimize the numberof intersectiondbetweenedges.A
screenshobf the Crossingapplicationis shovn in Figurel.

The Delivery applicationis a variation of the Traveling
SalesmarProblemin which thereis no requiremento visit
every location(Feillet, Dejax,& Gendreau2001). A prob-
lem consistsf a startingpoint, amaximumdistanceanda
setof customereachat a fixed geographidocationwith a
given numberof requestegackages.The goalis to deliv-
erasmary packagesspossiblewithout driving morethan
a given maximumdistance. A screenshobf the Delivery
applicationis shovn in Figure?2.

The Protein applicationis a simplified version of the
protein-foldingproblem,usingthe hydrophobic-hyrophilic
modelintroducedby Dill (Dill, 1985). A problemconsist-
s of a sequencef aminoacids, eachlabeledas either hy-
drophobicor hydrophilic. Thesequencenustbeplacedona
two-dimensionabrid without overlapping,so thatadjacen-
t aminoacidsin the sequenceemainadjacentin the grid.
The goalis to maximizethe numberof adjacenthydropho-
bic pairs. A screenshobf the Proteinapplicationis shavn
in Figure3.

TheJobshopapplicationis awidely-studiedaskschedul-
ing problem(Aartsetal., 1994).In thevariationwe consid-
er, aproblemconsistof n jobsandm machines.Eachjob
is composedf m operationgonefor eachmachine)which
mustbe performedn aspecifiedorder Operationsnustnot
overlaponamachineandtheoperationsassignedo agiven
machinecanbe processedh ary order Thegoalis to min-
imize thetime thatthelastjob finishes.A screenshoof the
Jobshompplicationis shawvn in Figure4.

Terminology

We introduceterminologyfor the abstractionsn our frame-
work. For eachoptimizationproblem,we assumehereis
somesetof probleminstances For eachprobleminstance,
thereis asetof candidatesolutions We assumehatthe sol-
utions aretotally ordered(with ties allowed); the function
ISBETTER(s1,82) returnstrueiff solutions; is strictly supe-
rior to s5. ThefunctionINIT(p) returnsaninitial solutionfor
problemp. A moveis atransformatiorthat canbe applied
to onesolutionto producea new solution.Eachmoveis de-
finedasoperatingon oneproblemelementandalteringthat
elementand possiblyothers. For example,moving a node
from the 3rd to the 8th positionin alist, andshifting the 4th
through8th nodesup one,would operateon the 3rd element
andalterthe 3rd throughthe 8th. ThefunctionMOVES(s,e)
returnsthe setof transformationghat operateon elemente
in solutions. Thefunction ALTERED(m) returnsthe setof
elementslteredby m.

The definition of elementsvariesfrom applicationto ap-
plication. The elementsare customerspodes,aminoacids,
andjob operationsin the Delivery, Crossing,Protein,and
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Figure2: The Delivery Application.

Jobshopapplicationsyespectiely. The definition of trans-
formationsalso variesfrom applicationto application. In
fact,aswith automaticoptimization,which transformation-
sto includeis animportantdesignchoicefor the develop-
er. Exampletransformationsare: swappingadjacentnodes
within alevel for Crossing swappingadjacenbperation®n
the samemachinein Jobshopandinsertinga customeiin-
to theroutein Delivery (amongothertransformations)Our
framawork requiresan additionaldecisionby the develop-
er: the elementghatarealteredby eachtranformation.For
example,in Delivery, theinsertiontransformatioralterson-
ly the insertedcustomer Alternatively, this transformation
could be definedasalteringnearbycustomersn the route.
Initial experiencewith the applicationcanhelpguidethese
decisions.

Mobilities

In our system,as with HUGSS,the systemmaintainsand
displaysa singlecurrentsolution,suchasthe onesshowvn in
Figuresl, 2, 3, and 4. Mobilities area generaimechanism
thatallow usersto visually annotateelementsof a solution
in orderto guide a computersearchto improve this solu-
tion. Eachelements assigned mobility. high, medium,or

low. The searchalgorithmis only allowed to explore sol-
utionsthatcanbereachedy applyinga sequencef moves
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Figure4: The JobshopApplication.

to the currentsolution suchthat eachmove operateson a
high-mobility elementand doesnot alter ary low-mobility
elements.

We demonstratenobilities with a simpleexample. Sup-
posethe problemcontainsserenelementsandthe solutions
to this problemareall possibleorderingsof theseelements.
The only allowed move on anelementis to swapit with an
adjacentlement.Supposehecurrentsolutionis asfollows,
andwe have assigne@lemen low mobility (shavnin dark
gray),elements and6 mediummobility (shavn in medium
gray),andtherestof theelement$iave highmobility (shovn
in light gray):

_1_2_._4_._._ 7—

A searchalgorithmcanswap a pair of adjacentlements
only if at leastone hashigh mobility and neitherhaslow
mobility. It is limited to the spaceof solutionsreachabldy
aseriesof suchswaps,including:

_1_2_._._._ 74 __
_2_1_._4_7_._._
e e =



Notethatsettingelement3 to low mobility essentiallydi-
videsthe probleminto two muchsmallersubproblemsAl-
so, while medium-mobility elementscan changeposition,
their relative ordercannotbe changed Mobility constraints
can drastically reducethe searchspace;for this example,
thereareonly 12 possiblesolutions,while without mobili-
ties,thereare7!=5040possiblesolutions.

We have foundthatthis generalizedrersionof mobilities
is usefulin awide varietyof applicationsincludingthefour
describedabore.

Guidable Tabu

We now presentGTABU, a guidabletalu searchalgorithm.
Thealgorithmmaintainsacurrentsolutionandcurrentsetof
mobilities. In eachiteration,GTABU first evaluatesall legal
moveson the currentsolutiongiven the currentmobilities,
in orderto identify which onewould yield the bestsolution.
It thenappliesthis move, which may make the currentsolu-
tion worse,andthenupdatests currentmobilities so asto
preventcycling andencouragexplorationof new regionsof
the searchspace.The pseudocodéor GTABU is shavn in
Figuresb and 6.

The algorithmupdateghe mobilitiesin two ways. First,
the call to the MEMORY function preventsthe talu search
from immediatelybacktracking,or cycling, by settingele-
mentsalteredby the currentmove to mediummobility. For
example,in Crossingjf the currentmove swapstwo nodes,
then both nodesare setto mediummobility, so that these
two nodescannotsimply be reswappedto their original lo-
cations. The nodesare restoredto their original mobility
after a userdefinednumberof iterationselapsecontrolled
by anintegermemSize whichis aninputto GTABU. Most
tabu searchalgorithmshave a similar mechanismo prevent
cycling.

A secondnechanismperformedoy the DIVERSIFY func-
tion in Figure6, encouragethe algorithmto choosemoves
thatalter elementghat have beenalteredlessfrequentlyin
the past. The algorithmmaintainsa list of all the problem
elementssortedin descendingrderby thenumberof times
they have beenaltered. The diversity of an elementis its
positionon thelist divided by thetotal numberof elements.
The diversity of a move is the averagediversity of the el-
ementsit alters. The diversity of a searchis the average
diversity of the movesit hasmadesincethe lasttime it has
foundabestsolution. Theuseris allowedto indicateatarget
minimumdiversitymin Div betweerD and1 for thesearch.
Whenever the averagediversity falls below this threshold,
thenary elementwith a diversitylessthanminDiv is setto
mediumfor oneiteration. This forcesthe talu algorithmto
malke amove with high diversity.

Underthe assumptiorthat a systemis more guidableif
it is moreunderstandableye strove to designa taku algo-
rithm that was easyto comprehend.Many automatictabu
algorithms,for example,have a mechanisnfor encourag-
ing diversificationin which the valueof a move is comput-
ed basedon how it affectsthe costof the currentsolution
and somedefinition of how diversethe move is. The two
componentsre combinedusinga control parametemwhich
specifiesaweightfor the diversificationfactor We original-
ly took a similar approachput foundthatusershadtrouble

GTABU (solution, mobilities, memSize, minDiv):
best < solution
original M obilities < mobilities
until haltedby user
m < bestmovein LEGALMOVES(solution,mobilities)
solution < resultof m appliedto solution
if ISBETTER(solution, best) then
best < solution
mobilities < original Mobilities
else
mobilities < MEMORY (m,mobilities,memSize)
mobilities < DIVERSIFY(m,mobilities, minDiv)
return best

Figure5: Pseuda:odefor guidabletabu search.

understandingnd usingthis control parameter Our expe-
riencefrom thetrainingsessionslescribeelow is thatthe
testsubjectscaneasilyunderstandhe min Div control pa-
rameter

The understandabilityf the algorithmis alsogreatlyen-
hancedyy thefactthatthetalu algorithmcontrolsits search
by modifying mobilities. The usersof our systemlearnthe
meaningof themobilitiesby usingthemto controlandfocus
thesearchAll four applicationgrovide acolor-codedvisu-
alizationof the users’currentmobility settings. This same
mechanisntanbe usedto display GTABU’s mobilities. We
provide several differentvisualizationmodesthat allow the
userto stepthroughthe searchoneiterationat a time or to
view GTABU’s currentsolutionandmobility settingsoriefly
at eachiteration. During an optimizationsessionthesevi-
sualizationsaretypically turnedoff becausehey reducethe
efficiency of the system. However, while learninghow to
usethe system thesevisualizationmodeshelp usersunder
standhow the algorithmworks.

Experimental Results

I mplementation

We implementedlomain-independemiddlevarefor inter-
active optimizationin Jasa andthenimplementedour four
applicationausingthis middleware. All applicationsusethe
sameimplementationof our talu searchalgorithm. The
middlewarealsoincludesa GUI andfunctionsfor managing
the currentworking solutionand mobilities, the history of
pastsolutions file Input/Output,andlogging userbehaior.
This softwareis freely availablefor researctor educational
purposesMore detailsaredescribedn Klau etal. (2002).
Our codefollowsthe HuGSSframework. Userscanman-
ually modify solutions,backtrackto previous solutions,as-
sign mobilities to problemelementsand invoke, monitor,
andhalt a searchalgorithm. Unlike HUGSS,however, our
systemprovidesa choice of searchalgorithmsand visual-
izationmodes.In additionto tabu searchwe alsoprovide (a
domain-independenBteepest-desceraind greedy exhaus-
tive searchsimilar to thosein the original HUGGSsystem.
Both exhaustve algorithmsfirst evaluateall legal moves,
thenall combinationf two legal moves,andthenall com-
binationsof threemovesandsoforth. The steepest-descent
algorithmsearche$or the move thatmostimprovesthecur-
rentsolution. Thegreedyalgorithmimmediatelymalesary
move which improvesthe currentsolutionandthenrestarts



greedy Tahu
0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 0.9
Delivery || 79.8 72.2 70.6 67.6 65.6 64.6 65.2 66.9 68.8 70.3 70.9
Crossing|| 69.0 85.0 75.9 67.7 64.3 53.9 48.1 40.0 38.4 37.9 43.4
Protein -315 | -30.0 | -31.3 | -348 | -36.1 | -36.6 -36.1 | -35.7 | -341 | -33.4 | -29.3
Jobshop || 2050.4| 2167.4| 2045.3| 1922.2| 1820.7| 1821.9| 1779.5 | 1846.9| 1860.4| 2059.0| 2164.2

Table 1: Resultsof unguidedgreedyand unguidedtabu with differentminimum diversities. All resultsaveragedover 10
problems,after five minutesof search. The bestresultin eachrow is shovn in bold. All the problemsare minimization
problemssolower numbersarebetter Note thatthe numbersarenegative for Protein.

LEGALMOVES (solution, mobilities):
returnsthe setof all movesm in MovES(solution,e)
wheree hashigh mobility in mobilities andevery element
in ALTERED(m) hashigh or mediummobility in mobilities

DIVERSIFY (move, mobilities, minDiv):

restoreary elementgo high mobility thatweresetto
mediummobility by previouscall to DIVERSIFY

computeaveragediversity of search(asdefinedin the paper)

if averagediversityis lessthanminDiv then setall
elementswith highmobility in mobilities anddiversity
lessthanminDiv to mediummobility

return mobilities

MEMORY (move, mobilities, memSize):
restoreary elementgo high mobility thatweresetto
mediummobility memSize iterationsagoby MEMORY
setall high-mobility elementsn ALTERED(move) to
mediummobility
return mobilities

Figure6: Supportfunctionsfor guidabletalu search.

its searchfrom theresultingsolution.

Eachapplicationrequiresa domain-specifiemplementa-
tion of the problems,solutions,andmoves. Essentially all
thefunctionsdescribedn the “Terminology” sectionabove
mustbe definedfor eachapplication. Eachapplicational-
sorequiresa visualizationcomponento displaythe current
solution and mobilities, aswell asallow usersto perform
manualmoves.

We generatedproblemsas follows. For Delivery, we
randomly distributed 300 customerson an 80x40 grid,
and randomly assignedeach customerbetweenthree and
seven requests. The truck is allowed to drive a total of
400 units on the grid. For Crossing,we usedten 12x8
graphswith 110 edgeswhich are publicly available from
http://unix.csis.ul.i€fgrafdath/TR-testgraphs.tdr We ran-
domly generatedsimilar graphsto train our test subjects.
We also generatecour own random15x10 graphs,with
between213-223edgesfor the secondsetof experiments
describedbelon. For Protein, we createdrandom se-
guencef aminoacidsof length 100 (eachacid had 50%
chanceof beinghydrophobic)andallowed themto be po-
sitioned on a 30x30 grid. For Jobshop,we used the
“swv00"-“swv10” instancef size 20x10 and 20x 15 (S-
torer, Wu, & Vaccari,1992) and the four “yn1"-“yn4” in-
stance®f size20x 20 (Yamada& Nakano,1992)available
at http://www.ms.ic.ac.uk/info.html.

All experimentswere performedwith unoptimizedJaza
codeon a 1000 MHz PC. All userexperimentswere per

Delivery Crossing
10min. | 10min. | 10min. | 10 min.
guided | guided | guided | guided
tahu greedy | taku greedy

unguidedaku 61 29 79 25
unguidedgreedy || >150 >150 >150 135

Table2: Averagenumberof minutesof unguidedsearchre-
quiredto matchor beattheresultproducedy 10 minutesof
guidedsearch.

formedon a tabletopprojecteddisplay aswasdonein the
original HuGSSexperimentgAndersonretal., 2000).

Experimentswith unguided search

By unguidedsearch, we meanrunning either the taku or
exhaustve algorithm without intervention and with all el-
ementssetto high mobility.

We performedexperimentgo evaluateour methodfor en-
couragingdiversity of thetabu search For eachapplication,
we ran the unguidedtabu searchwith various minimum-
diversity settings. We ran the searchon 10 problemsfor
five minuteswith a fixed memorysize of 10. Theresults,
shavn in Table1 shaw thatfor eachapplication forcing the
algorithmto make diversemovesimprovesthe searchbut
thatforcing too muchdiversity canhinderit.

We alsocomparedexhaustie searchto tabu search.We
usedthe greedyvariant of exhaustve searchbecausethe
steepest-descenariant is ineffective when starting from
poorinitial solutions.As alsoshavnin Tablel, with area-
sonablywell-choserdiversity setting,unguidedtabu signif-
icantly outperformaunguidedgreedysearch.

Finally, asan external comparisonwe ran a suite of s-
tandardgraph-layoutheuristicsGutwengeret al., 2002)on
the CrossingprobleminstancesThe averagebestscorewas
36.63,which is slightly betterthanunguidedtalu’s bests-
coreof 37.9from Table 1. (For thesesmallerinstancesthe
optimal solutionshave beencomputed(Kuusik, 2000) and
averageto 33.13.)

User studies

The goal of theseexperimentswas to comparehuman-
guidedtalu searchto unguidedtalbu searchandto human-
guidedexhaustve search.

In ourfirst setof experimentswe trainedtestsubjectsor
2-4 hourson how to useour system. We usedthe visual-
izationmodesin orderto teachthe subjectshow the algor



Table 3: The numberof wins (W), losses(L), andties (T)
whencomparingthe resultof 10 minutesof human-guided
tabu searchto 10to 150 minutesof unguidedahu searchas
well asthe averagedifferenceof thewins andlosses.

ithms work and how talu usesits minimum-diversity fea-
ture. Eachsubjectperformedfive 10-minutetrials usingour
systemwith only our GTABU algorithmandfive 10-minute
trials with only exhaustve search. The test subjectswere
studentsfrom nearbyselectve universities: our goal is to
shav thatsomepeoplecanguidesearchnot thatmostpeo-
ple can.

We usedthe samel0 probleminstancedor every sub-
ject. Half the subjectsdid the taku trials first, and half did
theexhaustve-searchrialsfirst. For eachprobleminstance,
half thesubjectausedtalbu andhalf usedexhaustie. For this
first experiment,we fixed the minimum diversity of tabu to
be the onethat producecthe bestresultsin preliminary ex-
perimenton randomproblemsfor eachapplication.

To evaluateeachresult,we comparedt to 2.5hoursof un-
guidedtabu searchon the sameproblem.Table2 shavs the
numberof minutesrequiredby unguidedtabu andunguided
greedyon averageto produceanequalor bettersolutionto
theoneproducedby 10 minutesof guidedsearch As shovn
in thetable,it took, on average morethanonehourfor un-
guidedtalu searchto matchor beattheresultof 10 minutes
of guidedtalu search. Furthermore the resultsof guided
tabu were substantiallybetterthanthoseof guidedgreedy
ascanbe seenby thefactthatunguidedtalbu overtalesthe
resultsof guidedgreedysearchmuchmorequickly.

Table 3 shavs a detailedcomparisorof the resultof 10
minutesof guidedtatu searchto betweenl0 and150 min-
utesof unguidedtabu search. The win andloss columns
shav how oftenthehuman-guidedesultis betterandworse,
respectiely. The table shavs that for Crossing,10 min-
utesof guidedsearchproducedbetterresultsthan2.5 hours
of unguidedsearchin nine of 20 instancesandtied in two.
WhenguidedsearcHoses,however, it doessoby more,on
average,thanit wins by. Incidentally sometest subjects
consistentlyperformedbetterthanothers.We planto study
individual performancecharacteristicgnore fully in future
work.

We ranasecondxperimenton thelargerinstanceso de-
termineif experienceduserscouldimprove on highly opti-
mizedsolutionsproducedby unguidedsearch.Prior to the
usersessionswe ranunguidedtabu searchor five hoursto
precomputea startingsolution. The testsubjectsthentried
to improve this solutionusingguidedtaku for onehalf hour.
The authorsof this paperwere amongthe testsubjectsfor

Delivery Crossing num | initial after30 | after300 | after600
min- [| W [ L Tlae [awve |[W[L]TT] ave | ave trials | solut- | minutes| minutes | minutes
utes win | loss win | loss ion guided | unguided| unguided
10 16 | 4 0|176|1085|14 |3 |3 ] 321 4.67 Delivery || 4 61.46 60.86 60.97 60.94
20 10/ 10| 0 | 1.10| 1.06| 11| 6 | 3 | 2.64 | 5.67 Crossing|| 8 253.13| 251.13 | 251.5 250.75
30 10|/ 10| 0| 095|127|11|6 | 3| 255 5.83 Jobshop || 6 958 952.33 | 954 954
60 8 1210|086 138| 10| 8| 2 | 270 | 6.25
90 8 1210|1080 146| 10| 8| 2 | 270 7.00 . . .

120 16 | 1410l 069] 14819 | 9| 2| 233| 6.80| Tabled: Theinitial solutionwascomputedwith 5 hoursof
150 || 4 | 16|0 |06 | 1429 |9 | 2| 233]| 6.890| unguidedtalu search. We comparea half hour of guided

searcho anadditional5-10hoursof unguidedsearch.

this experiment. Becausehe userswere experiencedthey
wereallowed to modify the minimum diversity setting. As
shavn in Table4, userswereableto improve uponthe sol-
utions morein half an hour than unguidedtalu did in 10
hours, althoughby small amounts. (In Crossingand De-
livery, the usersoutperformecdr matchedunguidedtabu in
all but one case. In that case,however, tabu found a sig-
nificantly bettersolution.) We againran the graph-layout
heuristicson theselarger Crossingprobleminstances.The
averagebestscorewas252.13;hereguidedsearchslightly
outperformgheheuristics.

We alsoperformedaninitial investigatiorwith the Protein
application.As oneanecdotabxample,we appliedour sys-
temto a hardinstancewith bestknown scoreof —49 (Bas-
tolla et al., 1998). Five hoursof unguidedtabu produced
a solutionwith score—47; one of the authorswas ableto
guidetahu to improve this solutionyielding a scoreof —48
in underanhour.

I nformal observations

While eachapplicationhadits own unique“feel,” therewere
several common characteristiceand generalstrateies for
guiding tabu searchin the four applications. A common
pattern,for example,is for the userto try to escapea deep
local minimum by making several manualmoves. These
movesoften causethe scoreto becometemporarilyworse,
but reinvoking the algorithmusuallyimprovesthe solution.
Mobilities aresometimesisedto preventthealgorithmfrom
returningto its previouslocal minimum. This approactfails
to producea new bestsolution more often than not, but a
seriesof attemptsoftenyields a new bestsolution. An effi-
cientapproachs to planthenext attemptwhile thecomputer
is working on the currentattempt.

In generalthe userlooksfor combinationsf movesthat
the computerwould not considerat once. For example,in
Delivery, it is a good stratgy to remove a clusterof cus-
tomersthatare,asa whole, far from the route, setthemto
low mobility, andreinvoke the talu search. The computer
would notreadily explorethis optionbecauseemoving one
ortwo customeratatimewould notsignificantlyreducethe
distanceof the route. Similarly, in Crossing,the useroften
looksfor nearlyindependentlustersof nodeswhich canall
be movedto a new location. In Jobshopjt is commonto
move several operationsearlier (or later) on their machines
in orderto give the machinemoreflexibility .

For the 10-minuteusertests,an importantstratgy was
to let the taku searchrun uninterruptedor the first minute
or two, sinceit would mostoftenmale its biggestimprove-
mentsin the early partof the search Thetestsubjectshada



hardertime learninghow to guidethe searchfor the Cross-
ing applicationthanthe Delivery applicationanduniformly
spentmorehourspracticingbeforethey felt comfortableto
try thetestcases.They seemto have reacheda higherlevel
of masteryhowever.

Conclusions

We have presentedGTABU, a guidabletabu searchalgo-
rithm, and experimentsto verify its effectiveness. To our
knowledge, no previous human-guidedahu algorithm has
beenpublishedpreviously.

GTABU representsa clear advancein interactve opti-
mization. Becausealu searchgenerallyprovidesa more
powerful searchstratgy thanexhaustve search,a human-
guidabletalu searchcanprovide bettersolutionswhile still
enjoying theadwantage®f involving peoplein theoptimiza-
tion process.Our experimentsconfirm that peoplecanun-
derstandand control GTABU, andthat guidedtabu search
outperformgguidedexhaustve search.

GTABU also shaws the potentialfor humaninteraction
to improve on automaticoptimization. Our experiments
demonstratethat guided taku outperformsunguidedtabu
in severaldomains;in particulayr small amountsof human
guidancecan be asvaluableas substantiabmountsof un-
guidedcomputettime.
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