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Abstract

We introduce linear methods for model-based tracking
nonrigid 3 objects and for acquiring such models fronj
video. ® motions and flexions are calculated directly frong v i
image intensities without information-lossy intermediate re % y ?3
sults. Measurement uncertainty is quantified and fully pro = interlacing

agated through the inverse model to yield posterior med — )
(PM) and/or modeNAP) pose estimates. A Bayesian framdzigure 1. Model-based tracking is robust to degraded im-

work manages uncertainty, accommodates priors, and gigggs and transient occlusions. Dots show flexed model in 3/4,
confidence measures. We obtain highly accurate and f@ntal, and profile view. Dots on face show where the image
bust closed-form estimators by minimizing information lod§ Sampled. Dots on neck encode Botion parameters.

from non-reversible (inner-product and least-squares) oper-
ations, and, when unavoidable, performing such operations

with the appropriate error norm. For model acquisition, Wgaye full use of information about the uncertainty in those
show how to refine a crude or generic model to fit the vidgQeasurements. Rather than treat the measurements as points,
subject. We demonstrate with tracking, model refinemegfe reat them as samples from a probability density function
and super-resolution texture lifting from low-quality low{ppp) whose covariance is determined from the image. We
resolution video. carry the entireeDF all the way through the inverse model so

. that evidence and constraints can interact without premature
1. Overview collapse of theeDF to point estimates.

Knowledge of ® shape and modes of deformation shouft0-3. Maximizing information state: The key to propa-

be a valuable constraint in visual tracking of nonrigid ol§atingpPDFs is the use of matrix transforms to maximize in-
jects. Here we reformulate the problem in a weak perspecﬁognation state: Nonreversible matrix operations (i.e., multi-
context and show that by careful propagation of evidenceplication, division, thinsvp) drop information about thepr
including uncertainty—through a properly inverted forwar@nd compound numerical error. Overconstrained division and
model, one can achieve robusb Jronrigid tracking di- thin svD are particularly nettlesome because their results are
rectly from intensity changes in relatively unconstrained logorrect only in a least-squares sense, whose spherical error
quality consumer-grade video—with lightweight computalorm is often known to be therong error norm for vision
tions. Our treatment offers a complete and correct charféoblems (e.g., se§?). We show how to structure chains of
terization of the inverse problem (from intensity values bo 3natrix operations so that information stag@wsrather than
motion parameters) as an inference task. collapses, principally by judicious substitution of reversible
1.0.1. Model-based flow:We develop a linear approach t@nalogues, for example, eliminating inner products by sub-
3D flex-constrained optical flow that enables online monogtituting Kronecker products for matrix multiplications. This
ular 3> tracking, model refinement, and super-resolutighlows us to eliminate or delay least-squares operations un-
texture lifting. Given a B flexible cloud-of-points model til the information state is finally collapsed to give a mo-
and video, we solve directly for translation, rotation, scaféon/flexion/shape estimate. To do so we introduce several
flexions (deformation coefficients), and confidence measukseful identities that enable one to factor information out of
in each frame. Posterior mearM) and Bayesian maxi- the expanded arraysder arbitrary elliptical error norms

mum a posteriori MAP) motion/flexion estimates are com1.0.4. Robust tracking without features: In tracking, we
puted directly from intensity gradients without informationuse these methods to propagate image uncertainties back
lossy intermediate results, e.g., without computing the flotirough the projection model until they can be narrowed or
The formulation also supports motion priors and multiesolved via interaction with global geometric invariants, then
frame/multiview constraints. integrated out to yield robust posterior meam) parameter
1.0.2. Uncertainty-informed estimation: To make robust estimates. The resulting tracker uses whatever information is
inference from a limited set of image measurements we masailable in an arbitrary sampling of image regions and gives

hand over jaw
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accurate motion estimates even when most of these regisnthe identity matrix;0 and1 are the zero and one matri-
are degenerate (textureless) and many are self-occluded. ces. When not specified, matrix dimensions are determined
1.0.5. Acquiring geometry and texture: These methodsby conformance. AT denotes transpose; vector-transpose
also lead to a procedure for extracting hearly deformable A" transposes matriA with each vertical group of el-
shape models from videoModel refinementombines a ements treated as a unit denotes Kronecker product)
generic or poorly fit model with its tracking residuals to yieldenotes Hadamard product; denotes tiled addition, e.g.,
a much more accurate model with increased detail (mad@x2 © Baxa = Agx2 + (13x1 ® Baxa). VECA vectorizes
points). The refined model supports subpixel-accurate tradkby stacking its columns and vea., . = (vecA)® folds
ing, which in turn allows us to integrate a super-resolutidiecA),...1 into a matrix having-c/i columns ofi elements
texture map from nonrigid motion in many frames. each; we have generalized vec to be consistent with common
practice for matrix reshaping.

1.1. Prior flexible model-based trackers

_ 1.3. Uncertainty propagation
1.1.1.2D: Several notable papers have used flexilmeribd- T
els for object matching or tracking. These are either based'Brptate €stimation it is common to treat measurements as
eigenspace representations of variability of shape and tex®d1ts whose coordinates are put through an inverted forward
[7, 3, 6] or parametric representations of variabili; [L6]. model to obtain an estimate of the state variables. It is well
Most require a large database of hand-marked i}nages ygperstood that this is a mathematically convenient fiction—

training and/or robustizing statistics to discard outliers; the_riréeasurements are samples from a di;triputi(_)n. For correct
is a price to pay for using2models of  variability. inference one should push the entire distribution through the

inverse model to form a posterieDFover the state variables.

1.1.2.3p: Nonrigid 3D tracking has been treated mostly asg L ) .
ne can then minimize or integrate out the uncertainty to ob-

optimization problem. Pighin, Szeliski, & Salesity used . ) } . I
Levenberg-Marquardt optimization to align atexture—mappg’dn meaningful estlmates such as the posterl(.)r.m I.
r mean pM) respectively, plus measures of their information

morphable ® model to video frames. DeCarlo and Metaxay tent h as th reri i d ent onl

[8] set the dynamics of a deformabl® 3nodel against the conten suz ast (T posd(f,trlor var;latnqetan tlen ;ogy. | nly un-

intensity gradients used to calculate optical flow and solvlg! rare and special conditions will point-estimated values co-
cide with thepm or MAP values. In fact, a point-estimated

a linearization of this equation for approximate velocities bg]—l h little inf i tent. b h
tween two frames. Edge information is incorporated into gfg!ue may nave very littie information content, because the
ount of nearby posterior probability mass is unknown.

system to keep the model from drifting off the subject, a : ot ) tal setti h hot
a largesvb is needed to invert the equations in each frame. N space-variant expenmental Setlings such as photogram-
the measurement uncertainty can be quantified directly

“Due to serious non-linearities” and non-robustness to ﬂd;r,\yetry,h . | diti ich ch | of inf
noise P, §4.2], this was put into an extended iterative Kalmafﬁom the signal, and it Is a very rich channel of informa-

filter that used flow uncertainty to balance edge forces agaiW%'f"l we will show hov;_t(:j design '.”VE‘rsle mode_lﬁ that cor-
flow forces, but apparently the flow forces themselves wefetly propagate quantitied uncertainty along with measure-

not uncertainty-informed. We will show that nonrigid motiofl'ENtS, leading estimates of physical yariaples that are consid-
can be estimated directly and robustly from intensity gratﬁ[ab_ly more ac_curatg—a_nd often quite different—than those
ents using purely linear methods. Eisert, Wiegand, and Girdjfained by point estimation.

[10] use the same dynamical &},[but calculate motion from .

a synthesized image that combines the model with a textdrg- Information state

map. This follows the analysis-by-synthesis approach of One difference between propagating point estimates and
Riovainen, & Forchheimerl3]. Bascle & Blake L] effectan pprs through inverse models is thamFs require special mea-
interesting compromise between 2nd 3 by factoring the sures to prevent information loss. The information state, or
motion of tracked contours into flexions and affine-with- number of bits used to describe thBF, should increase with
parallax warps viesvD, and suggest the problem we solveach operation that introduces new information, e.g., mea-
(without svD) in §3—factoring 3 motion and flexions from surements or physical constraints. But in inverse modeling
image data. Our results advance the literature with: closedtarge set of measurements is usually reduced to a small
form estimators for pose and flexion, integration over uncefamber of state parameters, implying a shrinking information
tainty in the measurables, and matrix transforms that migtate. Information state shrinks in two ways: Bits are lost in

mize information loss in calculations. non-reversibleoperations such as sums and matrix products
) (e.g., adding two numbers each havirtgts of precision pro-
1.2. Notation duces a result having at mdst- 1 reliable bits), while entire

We use standard notation taken froiri,[14]: a is a scalara dimensions are lost inon-invertibleoperations such as pro-
is a vectorA is a matrix;[=; A;], [{; A;],[X,A;] are hor- jections and least-squares fits, simply because it takes fewer
izontal, vertical, and diagonal concatenations, respectifelynumbers to specify the result than the operands.



To ensure that information state grows with each opei&e write ~ because optical flow is differential but the light
tion, we replace non-reversible operators with reversible afiald is sampled at discrete intervals in space and time. Sub-
logues. For example, we substitute Kronecker for matisituting egn.(1) for p; in eqn.(2) connects pose parame-
products, e.g., fo€ = A,.«.B,.x» We writeC' = A ® B. ters directly to the optic flow. By calculating the optical
This avoids bit loss because there are no sums and dimenflimn F = [{; f;] at many sites, one can set up an overcon-
drop because all pairwise products from the two operands strained system of equations and solve for pose parameters.
explicitly represented. The matrix produCtcan be extracted This works poorly, becausea) The spatial gradient may be
from C’ by adding elements; more importantly, the operandsgenerate, with zero components that corrupt the flow esti-
can also be recovered by averaging elements or, if thereniate. 8) The system of equations for pose parameters treats
noise, by factoring veg, (C'(™)) = (vecB)(vecAT)". A all flow estimates equally, while some are more reliable than
forward model rewritten in terms of reversible operators cathers. €) It takes two divisions to solve fdR and three for
be inverted to yield estimates that are considerably more epeach successive least-squares operation introduces error by
bust to numerical and measurement noise, due to overcamyplifying the influence of outliers and previous errors.
plete representation of ttroF. Furthermore:

Lemma: One can solve for any matrix of interest within a- INnference from measurements

arbitrary chain OT matri.x sums, products, reshapi.ngs, and 5%.3. Normal equations for symmetric flow:We begin by
2rranfge|?1 ?nr:_s ¥Eh asmlgtgle flet(:]\st—squarf S o;:r)]er.au-on. i reformulating optical flow to get a measure of uncertainty.
root sketch. The resuft of the operator chain 1S a linea, ssuming normally distributed noise in the image intensities

function of the matrix of interest. All linear operators COMy o distributi : :
. e distribution over possible texture flows at a local image
mute under suitable transforms (e @AB)" = BTAT), so P g

. ) . . ) atch is
the chain can be re-ordered until the matrix of interest is FB(

o .
posed to division. flow d_'St“bUt'-On f ~ Jl\/((jﬂf, X7"), where  (3)
Remarks: (A) Many of the algebraic and conformance con- SPatial gradient V, = 55 (lo(p) + Li(p)), (4)
straints that make it difficult to reorder a matrix formula are spatial variationXy,, = [ va; dp, )

handled in the course of converting the formula to reversibl . .
operators. §) Though matrices grow, they are often spars:femporal variationyz1 = [(11(p) ~ Lo(p)) - Vi dp.(6)
and their size is bounded by the number of measurementsu is linear iny, and the extent of the patch is defined by
the integration measurepdtypically a positive function that
2. 3D nonrigid motion monotonically declines with distance from the patch center.
This slightly generalizes a formulation due to Tom&3ignd
2.0.1. A forward model: We begin with a single B point inherits its virtues: £) It is symmetric, using texture infor-
on a nonrigid surface. LeD .3 be aK-morph basis for mation in both frames. B) Solutions fory; take the form
pointi; by convention the first row specifies the point's measf normal equationsn which possible degeneracies can be
3D location and subsequent rows are displacement vectmade well-behaved via a choice of error norma) X is the
establishing its modes of deformation. The projectiponf precision(inverse covariance) of the flow estimate; its eigen-
that point onto the image is vectors and eigenvalues give the directions and magnitudes
T of the flow’s greatest and least certainty.
p=O(Re D +t), () The mean of the distribution ovéy if determined purely
wherec 1 is a vector of morph coefficientR ;3 is a rota- from local image cues, would be estimatedigs«— X\y.
tion; 31 is a translation; an@ is a projection operator. WeHowever, by using a global motion model, we assert that
will consider the case of weak perspective, where- [{ 9 9] vec(P; — PO)T X=F'X=Y", (7)
and scale changes due to perspective looming are folded {jifich is the uncertain, multifiow version of eq), describ-
c. This provides a good approximation to full perspectiyq flows atV different sites simultaneously using the ver-
when depth variation within the surface is small relative {:a|ly stackedFan 1 = [I: fi], Yanx1 = [Is y:] and di-
surface/camera distance. agonally stacke®Xonwon = [Y;X;]. Note that this is an
2.0.2. Optical flow: A point p has no direct signature in theyncertain equatioecaus@ is a multivariaterbF, nota nu-
image, but the motion of thetBsurface immediately aroundmerically instantiable vector.

it can be related to local intensity changes from im&@éo 3.0.4. Reversible formulation: To maximize information

image/; via the chain rule: state, we rewrite the forward model as
( P )T d  dI ) P=(c'®@R)Sdt, (8)
ProPo~t= dp  dt whereSz -« v = [l; vecD, ] is a morph basis folV points,
. v = . . _ .
prrr?é%%tr?d optical sptial  temporal andRpy3,tpx; are truncated for projection tH = 2 di-

flow gradient  gradient mensional images. This is the multipoint weak perspective



LR = LG Qveq(c' ®R)S@t—Py) = QX 'Y = A2V Y,

(o2 R
AmmE X TR | | TR hich d rewrit (12)
dOR S_ t P wnich we rearrange ana rewrite as

Q((c'®R)S)P) =Y’ = AT2VTY+Q(Pyst), (13)
whereD is the dimensionality of the projection. To solve for
pose parameters we use the identity

equivalent of eqn1). Note that all variables of interest now (AB)?) = (BT @ Ip)AP) (14)
participate in reversible operators.
We substitute eqrig) for P, in eqn.(7) to obtain

veq(c'®@R)S@t —Py) =F =X"'Y. 9)

Figure 2: Depiction of eqrig) with D = 2, K = 4, N = 20.

to rearrange l.h.s. eq(L.3) to expose pose variables to divi-
sion. Repeated applications give

T (D) —_ T T (D)
Eqgn.(9) summarizes all the evidence and invariants avail- (¢’ ®R)S) (S ®ID)(C(§? R)*™, (15)
able. All inference tasks—motion estimation, shape esti- = (Ix ® R)S)*"¢, and (16)
mation, flow, etc., reduce to solving eq#) for the appro- = ((c"®13)8) @ Ip)RP). (17)

priate set of variables. Instead of direct algebraic soluti@_oj_ Rotation and deformation: Since & and R are

we will use Lh.s. eqne) to reduce the multivariat®dF gyongly coupled in planar projection, the physically mean-
F ~ N(pp,Zp = X71) to gaussian posteriors over the, | estimate is the mean of their joint poster®mF (the
unknowns. We then solve for the posterior mode. Since trlﬁ%ans of their marginal posterieprs may not be physically

gaussian mean and mode coincide, solving for the postefghsistent). So we first use eqts) to calculate the posterior
mode is equivalent to integrating out all uncertainty. overM = vegp(cT @ R) = (vecR)cT, the outer product
3.0.5. Translation: Without loss of generality, we assumej iha rotation and flexion parameters: ’

S is a zero-mean shape/morph basis (e.g., the row sums . - .
S1=0), so that rotation and deformation are decoupled from M ~ N(M, (S @ 1p)X(S" @1p))~") where (18)
translation, which can be estimated as the mean motion of all M — [(Q(S ® Ip))\'Y']®P). (19)

points. The posteriopDF over transiation is The posterior mead is easily factored to yiel®, &. The

t ~ N(,G'X'G/N?), where (10) virtue of factoring is that it avoids concentration of noise-
t — arg min, HN(Xi\Yi§ X = (XG)\Y,(11) based error in any one pose parameter. o
3.0.8. Orthonormal decomposition: The factorization

and the sum operat@ = (1yx1 ©1Ip). Eqn(lD)is derived (yecR)e — M (vectorized orthonormal matrix times co-
by taking the log of the product of gaussians and solving f@f;icient vector) is usually performed by rank-1 thavp

the minimum of the resulting quadratic form; the uncertalnr[)jSVT 2% M. followed by orthonormalization of vedJ

is calculated as the covariance of the average of a set of rt%”&iel dR, then corrective redivisiod « (vecR)\M. This

dom multivariatesgB shows how to combine this uncertaint¥inds the rotation closest to the vector that best fachdrs

with thgt of th? flow and propagate '.t into the rotat|o_n and d\?v'hich is not necessarily the rotation that best facidrs In-
formation estimates. We relegate it to an appendix becau§e . : .

: L stead we propose solving directly for a rotational factor. We
the translation uncertainty is very small compared to the flqvl;]/d R by projectingM onto the rotation manifold?:

uncer.talnty; we found that suph calculations have neg"g'hllﬁeorem: Letuy,; satisfyc u+0 and define
benefit at noticable computational expense.

3.0.6. Certainty warping: $A shows that for least-squares A=(Ipea")M~,M!|T =vecp(Mu).  (20)

operations such as division, there exists a “certainty Wargsing the eigen-decompositidiA V™ << (AAT
of a normally distributed uncertain dividend and its divisor ¢ ¢ P ( )DxD,

such that the quotient having minimum squared-error in the R« VAAT\A = VAT/2VTA, (21)
warped space is equal to the quotient having minimum maha- ¢ — ((vecR)\M)" = ((vecR)"M)T/D. (22)

lanobis residual in the original space, i.e., the result is the
posterior mode with respect to the uncertainty in the irRroof sketch: Eqn.(20) projects ontoR3” and eqn(21)
aged. The certainty warp for eqr9) is as follows: Let projects ontaS® (see [L2]). Setu = 1/(Kc) (element-wise
VAVT & 3121 = X decompose the precision matrix intdnverses) so that'u = 1. Substitutingl = (vecR)c " into
eigenvectord” and eigenvaluea.. In 2p, the decomposition €dn.(20) yields A = vecp((vecR)c'u) = R, and there-
requires three scalar square roots per point in the model. foi@ R = A = R in eqn.(21). Due to cancellation of in
left-handed certainty war@ = VAV T scales eqr9) inthe VAAT\A, the equalityR = R immediately generalizes to
directions where the flow is the most certain: any u yielding a full rankD division of anyA € or ¢ S°

1 there s uncertainty i . R , in eqn.(21) (hence the restrictioa” u # 0).

y in the divisor, division is no longer a linear o ~

erator and finding the mode of the non-gaussian posterior becomes a C?Bs%marks: (A)Ris cljetermirlled. up to one sign ambigUity (re-
entropy minimization problers]. flecting the bas-relief ambiguity of weak perspectiveR) (




Choices ofu do matter in the presence of noise because thg{c) = N(u.,X.). Since the log-posterior is a sum
cancellation becomes inexact. Because @@nestimates an balancing two quadratic forms (log-likelihood against log-
M having whitened uncertainty, = 1 works quite well and prior), and the least-squares division in the estimator is
the optimal valuar — -+ /trace(MTM) is quickly approx- similarly a ba!a_nce between'constraints gxpre;sed in the
) R ~ ) o rows of the divisor, the maximuna posteriori estimator
imated asit — M Mco|1). (C) For imagesR is com- Eyap =arg maxp(c|X,Y,R,t, u., ) is constructed by
puted in arO(1) 2D eigen-decomposition requiring just thre@ g catenating additional constraints (rows) to the system
scalar square roots. Factorization giap and orthonormal- ¢ equations. Of course, these constraints must also be

N 5 . X
ization takes)(K*). (D) We find that in Monte Carlo numer-cetainty-warped into the spherically normed space of the
ical trials with noise added VI, orthonormal decompos't'onIeast-squares solver. For example, &2).is rewritten

comes closest to a known true rotation with« 0.01 levels

. o (D) !
of statistical significance. EMAP — Q((Tx ® R)S) }\ { Y / } . (26)
3.0.9. A basic tracker: At this point, eqns(4-6, 11, 19, 20- Qe Qette

22) constitute a simple but quite functional nonrigid 810- \yhere Q. is the left-handed certainty warp derived from
tion tracker which can be implemented in one page of Matlgh—1 \ ap estimators can be similarly constructed for trans-
code. The rest of the paper explores other inferences and|§Rons and rotatioris

timizations this framework supports. 3.0.13. Residuals and likelihoods: Given a flow esti-
3.0.10. Motion refinement: Because the image evidence igate (¢T®R)S®t)— Py, the unaccounted tempo-
taken from small windows around each point, for large mpy, intensity information isH=Y —X (veck) intensity-
tions there is the risk that relevant regions in imdgeare |gyels x pixel-lengths. Working forward from the uncer-
not being sampled. Therefore it is desirable to resample Egﬁ-]ty model of the low-level flow (eqn@3)), the track-
gradients at a physical offset given by equs, 19). While jng residue, or mahalonobis distance, €HT X 'H
doing so, one can quickly reestimdie ¢ by computing their jntensity-levels (per frame). This implies that the likeli-
conditional posterior means from eq(is. 16): hood of the image evidence given a motion estimate is

Rlc — [(Q(((cT®15)8)T @ Ip)\Y'|?)  (23) p(X, Y[R, C,T) = ¢~ X" "Hi2nlog2n-log [X[)/2,

&R — Ix @ R)S) PN\ Y’ 24 . .
el (Q(Txc © R)S)THN (24) 3.1. Other sources of information
If iterated, this cycle can be viewed as a Gauss-Newt

method with quadratic convergence rate; in practise we fi%‘ 'jﬁeggﬂggeéocgtlggsg cS:r:ficee d?:;gﬂﬁf;?:f?;gﬁ;%dns on
we only need to do it once or twice per frafne g€ p

3.0.11. Rapid calculation: Eqns.(19, 23 & (24) can be a frame-by-frame basis by adding information about surface

. T T normals to the geometric model. One can then weight each
recast in normal form (e.gA\Y = (A"A)\(A'Y)) to flow window’s contribution toX, Y by max0,z), = being

yield small divisions by symmetric matrices that are the Siﬁ1e depth component of its associated unit normal. With oc-
of the unkowns. This also eliminates the need to Eigeq&ded pointsf must be refined as well '

decomposeX (because in normal form, we get the cance .1.2. Multiframe/multiview constraints: One may choose
lationsQ'Q — X andQ"A~'/2VT — I). For example, = =< : y

let B be the cheaply computed inverse Cholesky factor saﬁé‘—y set of previously processed frames and produce virtual

. Tl T rames by warping them into the pose of frame 1 us-
zjlggti]?utingeqrasg)(?n%gf)rrzzclg‘grm%nﬂg )gafég)ggifje'ghen ing their motion/flexion estimates. Then the multiframe mo-

T T tion/flexion estimators for frame are built by stacking the
A‘_VSC[(“ ®Isp)BB (S®Ip)(Y+X(Poot))], (25) gividends (and similarly, the divisors) that relate each virtual

evaluable as a sequence of shrinking matrix-vector muffi@me with framet. The matrices are already weighted by

plies. In the naive case of isotropic uncertainty, matrix diil€ir certainties, so the result is a proper expectation instead

sions can be eliminated entirelySfis made row-orthogonal. Of @ mere average. Evidence from multiple cameras can be

3.0.12. Priors and Bayesian inference: Thus far, we combined in the flexion estimator by similar stacking (assum-
have worked without a prior, so posterior mean and ma¥fg identical optics and distances to the surface).

mum marginal likelihood estimates are identical. One might del refi

want a prior on pose, motion, or expression; such pff- Model refinement

ors are easily folded into the estimators given above. RRkth rotations and flexions computed for many frames,
example, consider a gaussian prior probability on flexiO{hse model S can be refined to better fit the video

These are1AP/PM estimates w.r.t. the simplifying assumption that thsubject. Let Ro_; and co_; be the estimated ro-
other pose parameters are certain. It is also possible to solveAeres- tgtion and flexion taking frame 0 into frame and
timates w.r.t. uncertainty in the other pose parameftgréout notPm—the
posterior loses normality), but the increased computational cost appears t8Caveat: A rotational prior will be gaussian 1 rather than fisherian
outweigh the increased convergence rate. on theS3 manifold of rotations (a negligible difference for small, ).




No_;=c]_;®Ro_¢t—cq_,1@Ro_r1. LetF,; ., be the “seated” properly on the face. The remaining 1700 frames
flow taking framet—1 into framet, andt,_; _,; be its transla- were then tracked without difficulty, despite interlacing arti-
tional component. Then it is a tautology from e®).that facts, large rotations, motion blur, and partial self-occlusion
S =[5, No_/J\[VL; Fey_tOtea ], wherel signifies by hands and head turns (see figdje This is more than
vertical stacking. However, if we rewrite this using the uriwice the longest sequence reported 9 ft roughly 1/10
certainty information, then we can solve for the model thtte resolution (facial area), demonstrating very good resis-
minimizes tracking residuals for the estimated motion:  tance to drift. Image gradients were sampled twice per frame;
T motion estimators (eqn@4-23)) were applied once per sam-
[ Wizt Qrami(In©No—1)] (27) pling. Figure4 shows the motion parameters recovered from
\UL, Qe (FraiOti1—)] ] a subsequence with and without uncertainty propagation. Us-
_ing a refined version of the model (see below), the certainty-
(Q and A are those of the flow-based certaintyeighted tracker proved to be subpixel accurate with aver-
warp.) ~ One can calculate shape directly from imyge residual of.0062 intensity values per sampling window.
age gf‘ild'ents by replacing the numerator Witfhere was one occasional systematic source of error: When
Vi At—1~tQt—1—>t(Yt—%—>t_ (11X"®tt—1ﬁt,)xt—1—>t)]_- the subject turned his shiny forehead toward a spotlight, vio-
However, we found this can be sensitive to brightneggions of the brightness constancy assumption kept the model
constancy violations (e.g., it causes the model to bulge it 1 pixel short of the full rotation. The tracker was imple-
speculgrmes). We alsq found it useful_tq constrain €2). mented in interpreted Matlab code on a vintage 1998 Alpha
to retain thez,y coordinates of the original model and 1Q00MHzCPU; tracking rates ranged from 5-12Hz, depending
solve only for depth and deformations by stacking heavi§, tne number of pixels sampled per frame.
weighted rows with frontal-plane-only rotations. _ 5.0.6. Model refinement:We combined the model with the
4.0.3. Adding detail: Mod_el refinement makes it possible t?racking residuals as pép to refine the geometry, thereby
increase the level of detail of a model: Interpolate or eXtrapr‘é'covering the shape and depth of the nose as well as the

late new points, track, then refine to get corrected depths il ature of the forehead and cheeks. The morph basis was

deformations for those points. similarly improved. Figurés and the accompanying videos
contrast the original model with the results of refinement.
5.0.7. Super-resolution texture lifting: To confirm that the
tracking was subpixel-accurate, we took 24 tracked frames
rames 8-31 in figuret), warped the images to a common

) pose and expression, then combined the results to con-
ﬂHct a super-resolution image of the nose and upper lip (the

errors had made the data too noisy and warped to be us est-texture part of the face covered by the model) shown

for the client’s application. The images are also low qua“]— |gur96c§a?d ;nore clear'ly n thfe electronic St'”_sd)' ¢

ity, having low contrast and resolution, autofocus gaffes an -8. Mode re Inement ”'A68'. rame320x240 vi eoota
interlacing artifacts from an early consumer video cameriy€ar-old child was tracked using the same 26-point model
The image region containing the face is rougbty 100 pix- as above and then resampled and refined to 100 points. The
els and is quite dim, with a dynamic range of about 40 gr§§quence was far too short to sufficiently constrain the small-
levels. We obtai d 23-point modal f incipal est deformation modes—»but it did give a good shape and first
€vels. VVe obtained a 2s-point modg; from a principal yoqmation estimate, as depicted in fig@rand shown ro-
components analysis of a random subset of motion cap

f h iaid-bod ion had b . | ﬁng in the accompanying video. Note that this is quite diffi-
rames whose rigid-body motion had been approximately &ilt because modeling a child requires substantial changes to

moved. (We used motion capture data and video taken[haé shape/deformation basis and because youthful faces have

different times.) We also ggessed_S nose points. To get be\t/t&ry little texture.
coverage of the face, we linearly interpolated between these

points to obtain a new hexagonally-gridded 128-point modsl_ Summary

—at cost of having depths and deformations that are some-
what incorrect. None of the points in the original model wek&e have examined flexibleosBmodel-based flow and model
retained. This model predominantly samples the foreheadguisition from video in the context of linear deformable
nose, cheeks, and lower jaw—Iess than 15% of the samplingdels viewed in weak perspective. The main results are:
windows overlap high-texture features. (a) 3D motion/flexion estimators that operate directly on im-
5.0.5. Initialization and tracking: The model was su-age gradients and make full use of image uncertainty to yield
perimposed on the face in one frame with an incorrguosterior mean estimate®)(methods for minimizing infor-
frontal/neutral pose and a 20-frame subsequence was trackation loss about the measurementr as it is propagated
backwards and forwards several times until the modbrough chains of matrix operations in the inverse model;

S «— vec
3KxN

5. Experiments

5.0.4. Model acquisition: We were given som820 x 240
29.97Hz video of a subject who had been motion—capturg
several years ago. The video and some 23-marker mot

capture data was donated by the studio because calibr
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Figure 3: Five views of B shape and three principal deformations (closing mouth, opening mouth & raising eyebrows,
pulling down mouth corner) recovered from model refinement. All have synthetic geometry and texture.

flexions

rotations

Figure 5: The model before and after one iteration of tracking
and refinement, which recovers nose shape and curvature of
T "] the cheeks and forehead. Deformations improve as well; here
b 4 the refined model is posed with the jaw raised partway. We
have also added a shaded surface to indicate depth.
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Figure 4: Model-based tracking results from the middle 100

frames of a joke-telling sequence using certainty-weighted
(top) and naive (bottom) estimators. Top five graphs shéugure 6: Super-resolution from tracking. Clockwise from
(top to bottom) certainty-weighted flexions, rotation, scalt®p-left: (1) Close-up of a single frame. (2) The best single-
translation, and log-likelihood (note likelihood peaks fdfame upsampled bicubic interpolation we could achieve by
rigid changes such as head rotations). Bottom three grappgd. (3) A64x super-resolution image constructed by com-
show naively calculated flexions, rotation, and translatiopining 24 tracked frames with motions and flexions warped
The Certainty_weighted tracker produces a very clean ro@it. Note the added detail at the cleft of the nose, the con-
tion estimate and registers the flexions in precise detail; g between the nose and left eye, and the curve of the skin

naive tracker has trouble separating rotations from flexiofeld that runs from nose to mouth corner. (4) Differencing
particularly near the end of the segment. (2) & (3) reveals some pixelation artifacts and a small flexion

widening the upper lip.

translations




	title page
	page 2

	Flexible flow for 3D nonrigid tracking and shape recovery
	.  Overview
	.  Prior flexible model-based trackers
	.  Notation
	.  Uncertainty propagation
	.  Information state

	.  3D nonrigid motion
	.  Inference from measurements
	.  Other sources of information

	.  Model refinement
	.  Experiments
	.  Summary
	.  Elliptical error norms
	.  Propagating translation uncertainty


