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Abstract

We introduce linear methods for model-based tracking of
nonrigid 3D objects and for acquiring such models from
video. 3D motions and flexions are calculated directly from
image intensities without information-lossy intermediate re-
sults. Measurement uncertainty is quantified and fully prop-
agated through the inverse model to yield posterior mean
(PM) and/or mode (MAP) pose estimates. A Bayesian frame-
work manages uncertainty, accommodates priors, and gives
confidence measures. We obtain highly accurate and ro-
bust closed-form estimators by minimizing information loss
from non-reversible (inner-product and least-squares) oper-
ations, and, when unavoidable, performing such operations
with the appropriate error norm. For model acquisition, we
show how to refine a crude or generic model to fit the video
subject. We demonstrate with tracking, model refinement,
and super-resolution texture lifting from low-quality low-
resolution video.

1. Overview
Knowledge of 3D shape and modes of deformation should
be a valuable constraint in visual tracking of nonrigid ob-
jects. Here we reformulate the problem in a weak perspective
context and show that by careful propagation of evidence—
including uncertainty—through a properly inverted forward
model, one can achieve robust 3D nonrigid tracking di-
rectly from intensity changes in relatively unconstrained low-
quality consumer-grade video—with lightweight computa-
tions. Our treatment offers a complete and correct charac-
terization of the inverse problem (from intensity values to 3D

motion parameters) as an inference task.
1.0.1. Model-based flow:We develop a linear approach to
3D flex-constrained optical flow that enables online monoc-
ular 3D tracking, model refinement, and super-resolution
texture lifting. Given a 3D flexible cloud-of-points model
and video, we solve directly for translation, rotation, scale,
flexions (deformation coefficients), and confidence measures
in each frame. Posterior mean (PM) and Bayesian maxi-
mum a posteriori (MAP) motion/flexion estimates are com-
puted directly from intensity gradients without information-
lossy intermediate results, e.g., without computing the flow.
The formulation also supports motion priors and multi-
frame/multiview constraints.
1.0.2. Uncertainty-informed estimation: To make robust
inference from a limited set of image measurements we must

Figure 1: Model-based tracking is robust to degraded im-
ages and transient occlusions. Dots show flexed model in 3/4,
frontal, and profile view. Dots on face show where the image
is sampled. Dots on neck encode 3D motion parameters.

make full use of information about the uncertainty in those
measurements. Rather than treat the measurements as points,
we treat them as samples from a probability density function
(PDF) whose covariance is determined from the image. We
carry the entirePDF all the way through the inverse model so
that evidence and constraints can interact without premature
collapse of thePDF to point estimates.

1.0.3. Maximizing information state: The key to propa-
gatingPDFs is the use of matrix transforms to maximize in-
formation state: Nonreversible matrix operations (i.e., multi-
plication, division, thinSVD) drop information about thePDF

and compound numerical error. Overconstrained division and
thin SVD are particularly nettlesome because their results are
correct only in a least-squares sense, whose spherical error
norm is often known to be thewrong error norm for vision
problems (e.g., see§2). We show how to structure chains of
matrix operations so that information stategrowsrather than
collapses, principally by judicious substitution of reversible
analogues, for example, eliminating inner products by sub-
stituting Kronecker products for matrix multiplications. This
allows us to eliminate or delay least-squares operations un-
til the information state is finally collapsed to give a mo-
tion/flexion/shape estimate. To do so we introduce several
useful identities that enable one to factor information out of
the expanded arraysunder arbitrary elliptical error norms.

1.0.4. Robust tracking without features: In tracking, we
use these methods to propagate image uncertainties back
through the projection model until they can be narrowed or
resolved via interaction with global geometric invariants, then
integrated out to yield robust posterior mean (PM) parameter
estimates. The resulting tracker uses whatever information is
available in an arbitrary sampling of image regions and gives
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accurate motion estimates even when most of these regions
are degenerate (textureless) and many are self-occluded.
1.0.5. Acquiring geometry and texture: These methods
also lead to a procedure for extracting 3D linearly deformable
shape models from video:Model refinementcombines a
generic or poorly fit model with its tracking residuals to yield
a much more accurate model with increased detail (more
points). The refined model supports subpixel-accurate track-
ing, which in turn allows us to integrate a super-resolution
texture map from nonrigid motion in many frames.

1.1. Prior flexible model-based trackers

1.1.1.2D: Several notable papers have used flexible 2D mod-
els for object matching or tracking. These are either based on
eigenspace representations of variability of shape and texture
[7, 3, 6] or parametric representations of variability [4, 16].
Most require a large database of hand-marked images for
training and/or robustizing statistics to discard outliers; there
is a price to pay for using 2D models of 3D variability.
1.1.2.3D: Nonrigid 3D tracking has been treated mostly as a
optimization problem. Pighin, Szeliski, & Salesin [15] used
Levenberg-Marquardt optimization to align a texture-mapped
morphable 3D model to video frames. DeCarlo and Metaxas
[8] set the dynamics of a deformable 3D model against the
intensity gradients used to calculate optical flow and solved
a linearization of this equation for approximate velocities be-
tween two frames. Edge information is incorporated into the
system to keep the model from drifting off the subject, and
a largeSVD is needed to invert the equations in each frame.
“Due to serious non-linearities” and non-robustness to flow
noise [9, §4.2], this was put into an extended iterative Kalman
filter that used flow uncertainty to balance edge forces against
flow forces, but apparently the flow forces themselves were
not uncertainty-informed. We will show that nonrigid motion
can be estimated directly and robustly from intensity gradi-
ents using purely linear methods. Eisert, Wiegand, and Girod
[10] use the same dynamical as [8], but calculate motion from
a synthesized image that combines the model with a texture
map. This follows the analysis-by-synthesis approach of Li,
Riovainen, & Forchheimer [13]. Bascle & Blake [1] effect an
interesting compromise between 2D and 3D by factoring the
motion of tracked contours into flexions and 2D affine-with-
parallax warps viaSVD, and suggest the problem we solve
(without SVD) in §3—factoring 3D motion and flexions from
image data. Our results advance the literature with: closed-
form estimators for pose and flexion, integration over uncer-
tainty in the measurables, and matrix transforms that mini-
mize information loss in calculations.

1.2. Notation
We use standard notation taken from [11, 14]: a is a scalar,a
is a vector,A is a matrix;[⇒i Ai], [⇓i Ai], [ ⇓iAi] are hor-
izontal, vertical, and diagonal concatenations, respectively.I

is the identity matrix;0 and1 are the zero and one matri-
ces. When not specified, matrix dimensions are determined
by conformance. A> denotes transpose; vector-transpose
A(i) transposes matrixA with each vertical group ofi el-
ements treated as a unit.⊗ denotes Kronecker product;�
denotes Hadamard product;⊕ denotes tiled addition, e.g.,
A6×2 ⊕B2×2 = A6×2 + (13×1 ⊗B2×2). vecA vectorizes
A by stacking its columns and veci Ar×c = (vecA)(i) folds
(vecA)rc×1 into a matrix havingrc/i columns ofi elements
each; we have generalized vec to be consistent with common
practice for matrix reshaping.

1.3. Uncertainty propagation
In state estimation it is common to treat measurements as
points whose coordinates are put through an inverted forward
model to obtain an estimate of the state variables. It is well
understood that this is a mathematically convenient fiction—
measurements are samples from a distribution. For correct
inference one should push the entire distribution through the
inverse model to form a posteriorPDFover the state variables.
One can then minimize or integrate out the uncertainty to ob-
tain meaningful estimates such as the posterior mode (MAP)
or mean (PM) respectively, plus measures of their information
content such as the posterior variance and entropy. Only un-
der rare and special conditions will point-estimated values co-
incide with thePM or MAP values. In fact, a point-estimated
value may have very little information content, because the
amount of nearby posterior probability mass is unknown.

In space-variant experimental settings such as photogram-
metry, the measurement uncertainty can be quantified directly
from the signal, and it is a very rich channel of informa-
tion. We will show how to design inverse models that cor-
rectly propagate quantified uncertainty along with measure-
ments, leading estimates of physical variables that are consid-
erably more accurate—and often quite different—than those
obtained by point estimation.

1.4. Information state
One difference between propagating point estimates and
PDFs through inverse models is thatPDFs require special mea-
sures to prevent information loss. The information state, or
number of bits used to describe thePDF, should increase with
each operation that introduces new information, e.g., mea-
surements or physical constraints. But in inverse modeling
a large set of measurements is usually reduced to a small
number of state parameters, implying a shrinking information
state. Information state shrinks in two ways: Bits are lost in
non-reversibleoperations such as sums and matrix products
(e.g., adding two numbers each havingb bits of precision pro-
duces a result having at mostb+ 1 reliable bits), while entire
dimensions are lost innon-invertibleoperations such as pro-
jections and least-squares fits, simply because it takes fewer
numbers to specify the result than the operands.



To ensure that information state grows with each opera-
tion, we replace non-reversible operators with reversible ana-
logues. For example, we substitute Kronecker for matrix
products, e.g., forC = Ar×cBm×n we writeC′ = A ⊗B.
This avoids bit loss because there are no sums and dimension
drop because all pairwise products from the two operands are
explicitly represented. The matrix productC can be extracted
from C′ by adding elements; more importantly, the operands
can also be recovered by averaging elements or, if there is
noise, by factoring vecmn(C′(m)) = (vecB)(vecA>)>. A
forward model rewritten in terms of reversible operators can
be inverted to yield estimates that are considerably more ro-
bust to numerical and measurement noise, due to overcom-
plete representation of thePDF. Furthermore:
Lemma: One can solve for any matrix of interest within an
arbitrary chain of matrix sums, products, reshapings, and re-
arrangements with a single least-squares operation.
Proof sketch: The result of the operator chain is a linear
function of the matrix of interest. All linear operators com-
mute under suitable transforms (e.g.,(AB)> = B>A>), so
the chain can be re-ordered until the matrix of interest is ex-
posed to division.
Remarks: (A) Many of the algebraic and conformance con-
straints that make it difficult to reorder a matrix formula are
handled in the course of converting the formula to reversible
operators. (B) Though matrices grow, they are often sparse
and their size is bounded by the number of measurements.

2. 3D nonrigid motion

2.0.1. A forward model: We begin with a single 3D point
on a nonrigid surface. LetDK×3 be aK-morph basis for
point i; by convention the first row specifies the point’s mean
3D location and subsequent rows are displacement vectors
establishing its modes of deformation. The projectionp of
that point onto the image is

p = O(Rc>D + t), (1)

wherecK×1 is a vector of morph coefficients,R3×3 is a rota-
tion; t3×1 is a translation; andO is a projection operator. We
will consider the case of weak perspective, whereO = [10

0
1

0
0]

and scale changes due to perspective looming are folded into
c. This provides a good approximation to full perspective
when depth variation within the surface is small relative to
surface/camera distance.
2.0.2. Optical flow: A point p has no direct signature in the
image, but the motion of the 3D surface immediately around
it can be related to local intensity changes from imageI0 to
imageI1 via the chain rule:(

p1 − p0︸ ︷︷ ︸
projected
motion

≈ f .=
dp
dt︸ ︷︷ ︸

optical
flow

)>
· dI

dp︸︷︷︸
spatial

gradient

=
dI
dt︸︷︷︸

temporal
gradient

(2)

We write≈ because optical flow is differential but the light
field is sampled at discrete intervals in space and time. Sub-
stituting eqn.(1) for p1 in eqn.(2) connects pose parame-
ters directly to the optic flow. By calculating the optical
flow F .= [⇓i fi] at many sites, one can set up an overcon-
strained system of equations and solve for pose parameters.
This works poorly, because: (A) The spatial gradient may be
degenerate, with zero components that corrupt the flow esti-
mate. (B) The system of equations for pose parameters treats
all flow estimates equally, while some are more reliable than
others. (C) It takes two divisions to solve forR and three for
c; each successive least-squares operation introduces error by
amplifying the influence of outliers and previous errors.

3. Inference from measurements
3.0.3. Normal equations for symmetric flow:We begin by
reformulating optical flow to get a measure of uncertainty.
Assuming normally distributed noise in the image intensities
the distribution over possible texture flows at a local image
patch is

flow distribution f ∼ N (µf ,X−1), where (3)

spatial gradient ∇p
.= 1

2
d

dp
(I0(p) + I1(p)), (4)

spatial variationX2×2
.=
∫
∇p∇>p dp, (5)

temporal variationy2×1
.=
∫

(I1(p)− I0(p)) · ∇p dp,(6)

µf is linear iny, and the extent of the patch is defined by
the integration measure dp, typically a positive function that
monotonically declines with distance from the patch center.
This slightly generalizes a formulation due to Tomasi [2] and
inherits its virtues: (A) It is symmetric, using texture infor-
mation in both frames. (B) Solutions forµf take the form
of normal equationsin which possible degeneracies can be
made well-behaved via a choice of error norm. (C) X is the
precision(inverse covariance) of the flow estimate; its eigen-
vectors and eigenvalues give the directions and magnitudes
of the flow’s greatest and least certainty.

The mean of the distribution overf , if determined purely
from local image cues, would be estimated asµ̂f ← X\y.
However, by using a global motion model, we assert that

vec(P1 −P0)>X = F>X = Y>, (7)
which is the uncertain, multiflow version of eqn.(2), describ-
ing flows atN different sites simultaneously using the ver-
tically stackedF2N×1

.= [⇓i fi], Y2N×1
.= [⇓i yi] and di-

agonally stackedX2N×2N
.= [ ⇓iXi]. Note that this is an

uncertain equationbecauseF is a multivariatePDF, nota nu-
merically instantiable vector.
3.0.4. Reversible formulation: To maximize information
state, we rewrite the forward model as

P = (c>⊗R)S⊕ t, (8)
whereS3K×N

.= [⇓i vecD>i ] is a morph basis forN points,
andRD×3, tD×1 are truncated for projection toD = 2 di-
mensional images. This is the multipoint weak perspective
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Figure 2: Depiction of eqn.(8) with D = 2,K = 4, N = 20.

equivalent of eqn.(1). Note that all variables of interest now
participate in reversible operators.

We substitute eqn.(8) for P1 in eqn.(7) to obtain

vec((c>⊗R)S⊕ t−P0) = F = X−1Y. (9)

Eqn. (9) summarizes all the evidence and invariants avail-
able. All inference tasks—motion estimation, shape esti-
mation, flow, etc., reduce to solving eqn.(9) for the appro-
priate set of variables. Instead of direct algebraic solution,
we will use l.h.s. eqn.(9) to reduce the multivariatePDF

F ∼ N (µF,ΣF = X−1) to gaussian posteriors over the
unknowns. We then solve for the posterior mode. Since the
gaussian mean and mode coincide, solving for the posterior
mode is equivalent to integrating out all uncertainty.
3.0.5. Translation: Without loss of generality, we assume
S is a zero-mean shape/morph basis (e.g., the row sums
S1=0), so that rotation and deformation are decoupled from
translation, which can be estimated as the mean motion of all
points. The posteriorPDF over translation is

t ∼ N (̂t,G>X−1G/N2), where (10)

t̂ ← arg mint′
∏
i

N (Xi\yi; t′,X−1
i ) = (XG)\Y, (11)

and the sum operatorG .= (1N×1⊗ ID). Eqn.(11) is derived
by taking the log of the product of gaussians and solving for
the minimum of the resulting quadratic form; the uncertainty
is calculated as the covariance of the average of a set of ran-
dom multivariates.§B shows how to combine this uncertainty
with that of the flow and propagate it into the rotation and de-
formation estimates. We relegate it to an appendix because
the translation uncertainty is very small compared to the flow
uncertainty; we found that such calculations have negligible
benefit at noticable computational expense.
3.0.6. Certainty warping: §A shows that for least-squares
operations such as division, there exists a “certainty warp”
of a normally distributed uncertain dividend and its divisor
such that the quotient having minimum squared-error in the
warped space is equal to the quotient having minimum maha-
lanobis residual in the original space, i.e., the result is the
posterior mode with respect to the uncertainty in the im-
ages1. The certainty warp for eqn.(9) is as follows: Let
VΛV> EIG←− Σ−1

F = X decompose the precision matrix into
eigenvectorsV and eigenvaluesΛ. In 2D, the decomposition
requires three scalar square roots per point in the model. The
left-handed certainty warpQ .=

√
ΛV> scales eqn.(9) in the

directions where the flow is the most certain:
1If there is uncertainty in the divisor, division is no longer a linear op-

erator and finding the mode of the non-gaussian posterior becomes a cross-
entropy minimization problem [5].

Q vec((c>⊗R)S⊕ t−P0) = QX−1Y = Λ−1/2V>Y,
(12)

which we rearrange and rewrite as

Q((c>⊗R)S)(D) = Y′ .= Λ−1/2V>Y+Q(P0	t), (13)

whereD is the dimensionality of the projection. To solve for
pose parameters we use the identity

(AB)(D) = (B> ⊗ ID)A(D) (14)

to rearrange l.h.s. eqn.(13) to expose pose variables to divi-
sion. Repeated applications give

((c>⊗R)S)(D) = (S> ⊗ ID)(c>⊗R)(D), (15)

= ((IK ⊗R)S)(D)c, and (16)

= (((c>⊗ I3)S)> ⊗ ID)R(D). (17)

3.0.7. Rotation and deformation: Since ĉ and R̂ are
strongly coupled in planar projection, the physically mean-
ingful estimate is the mean of their joint posteriorPDF (the
means of their marginal posteriorPDFs may not be physically
consistent). So we first use eqn.(15) to calculate the posterior
overM .= vec3D(c>⊗R) = (vecR)c>, the outer product
of the rotation and flexion parameters:

M ∼ N (M̂, ((S⊗ ID)X(S> ⊗ ID))−1) where (18)

M̂ ← [(Q(S> ⊗ ID))\Y′](3D). (19)

The posterior mean̂M is easily factored to yield̂R, ĉ. The
virtue of factoring is that it avoids concentration of noise-
based error in any one pose parameter.
3.0.8. Orthonormal decomposition: The factorization
(vecR̂)ĉ←M (vectorized orthonormal matrix times co-
efficient vector) is usually performed by rank-1 thinSVD

USV>
SVD1←−M, followed by orthonormalization of vec2 U

to yield R̂, then corrective redivision̂c← (vecR̂)\M. This
finds the rotation closest to the vector that best factorsM,
which is not necessarily the rotation that best factorsM. In-
stead we propose solving directly for a rotational factor. We
find R̂ by projectingM onto the rotation manifoldS3:
Theorem: Let uk×1 satisfyc>u 6=0 and define

A .=(ID⊗û>)[M↔,Ml]> = vecD(Mu). (20)

Using the eigen-decompositionVΛV> EIG←− (AA>)D×D,

R̂ ←
√

AA>\A = VΛ−1/2V>A, (21)

ĉ ← ((vecR̂)\M)> = ((vecR̂)>M)>/D. (22)

Proof sketch: Eqn. (20) projects ontoR3D and eqn.(21)
projects ontoS3 (see [12]). Setu = 1/(Kc) (element-wise
inverses) so thatc>u = 1. SubstitutingM = (vecR)c> into
eqn.(20) yields A = vecD((vecR)c>u) = R, and there-
fore R̂ = A = R in eqn.(21). Due to cancellation ofu in√

AA>\A, the equalityR̂ = R immediately generalizes to
anyu yielding a full rank-D division of anyA ∈ or 6∈ S3

in eqn.(21) (hence the restrictionc>u 6= 0).
Remarks: (A) R̂ is determined up to one sign ambiguity (re-
flecting the bas-relief ambiguity of weak perspective). (B)



Choices ofu do matter in the presence of noise because the
cancellation becomes inexact. Because eqn.(19) estimates an
M̂ having whitened uncertainty,u = 1 works quite well and

the optimal valueu = ±
√

trace(M̂>M̂) is quickly approx-

imated aŝu ← M̂>M̂col(1). (C) For images,R̂ is com-
puted in anO(1) 2D eigen-decomposition requiring just three
scalar square roots. Factorization viaSVD and orthonormal-
ization takesO(K2). (D) We find that in Monte Carlo numer-
ical trials with noise added toM, orthonormal decomposition
comes closest to a known true rotation withp � 0.01 levels
of statistical significance.
3.0.9. A basic tracker: At this point, eqns.(4-6, 11, 19, 20-
22) constitute a simple but quite functional nonrigid 3D mo-
tion tracker which can be implemented in one page of Matlab
code. The rest of the paper explores other inferences and op-
timizations this framework supports.
3.0.10. Motion refinement: Because the image evidence is
taken from small windows around each point, for large mo-
tions there is the risk that relevant regions in imageI1 are
not being sampled. Therefore it is desirable to resample the
gradients at a physical offset given by eqns.(11, 19). While
doing so, one can quickly reestimateR̂, ĉ by computing their
conditional posterior means from eqns.(17, 16):

R̂|c ← [(Q(((c>⊗ I3)S)> ⊗ ID))\Y′](D) (23)

ĉ|R ← (Q((IK ⊗R)S)(D))\Y′ (24)

If iterated, this cycle can be viewed as a Gauss-Newton
method with quadratic convergence rate; in practise we find
we only need to do it once or twice per frame2.
3.0.11. Rapid calculation: Eqns.(19, 23) & (24) can be
recast in normal form (e.g.,A\Y = (A>A)\(A>Y)) to
yield small divisions by symmetric matrices that are the size
of the unkowns. This also eliminates the need to eigen-
decomposeX (because in normal form, we get the cancel-
lationsQ>Q → X andQ>Λ−1/2V> → I). For example,
let B be the cheaply computed inverse Cholesky factor satis-
fying B−>B−1 = [(S⊗ ID)X(S> ⊗ ID)]3DK×3DK . Then
substituting eqn.(19) in normal form into eqn.(20) gives

A←vec
D

[(u>⊗I3D)BB>(S⊗ID)(Y+X(P0	t))], (25)

evaluable as a sequence of shrinking matrix-vector multi-
plies. In the naive case of isotropic uncertainty, matrix divi-
sions can be eliminated entirely ifS is made row-orthogonal.
3.0.12. Priors and Bayesian inference: Thus far, we
have worked without a prior, so posterior mean and maxi-
mum marginal likelihood estimates are identical. One might
want a prior on pose, motion, or expression; such pri-
ors are easily folded into the estimators given above. For
example, consider a gaussian prior probability on flexions

2These areMAP/PM estimates w.r.t. the simplifying assumption that the
other pose parameters are certain. It is also possible to solve forMAP es-
timates w.r.t. uncertainty in the other pose parameters [5] (but not PM—the
posterior loses normality), but the increased computational cost appears to
outweigh the increased convergence rate.

pc(c) .= N (µ′c,Σ
′
c). Since the log-posterior is a sum

balancing two quadratic forms (log-likelihood against log-
prior), and the least-squares division in the estimator is
similarly a balance between constraints expressed in the
rows of the divisor, the maximuma posteriori estimator
ĉ′MAP

.=arg maxcp(c|X,Y,R, t, µ′c,Σ
′
c) is constructed by

concatenating additional constraints (rows) to the system
of equations. Of course, these constraints must also be
certainty-warped into the spherically normed space of the
least-squares solver. For example, eqn.(24) is rewritten

ĉMAP ←
[

Q((IK ⊗R)S)(D)

Qc

]∖[
Y′

Qcµ
′
c

]
. (26)

where Qc is the left-handed certainty warp derived from
Σ′−1

c . MAP estimators can be similarly constructed for trans-
lations and rotations3.
3.0.13. Residuals and likelihoods: Given a flow esti-
mate F̂← ((ĉ>⊗R̂)S⊕t̂)−P0, the unaccounted tempo-
ral intensity information isH .=Y−X(vecF̂) intensity-
levels× pixel-lengths. Working forward from the uncer-
tainty model of the low-level flow (eqn.(3)), the track-
ing residue, or mahalonobis distance, is

√
H>X−1H

intensity-levels (per frame). This implies that the likeli-
hood of the image evidence given a motion estimate is
p(X,Y|R,C,T) = e−(H>X−1H+2n log 2π−log |X|)/2.

3.1. Other sources of information
3.1.1. Oblique/occluded surface patches:Backfacing and
silhouette-edge patches can be discounted in calculations on
a frame-by-frame basis by adding information about surface
normals to the geometric model. One can then weight each
flow window’s contribution toX,Y by max(0, z), z being
the depth component of its associated unit normal. With oc-
cluded points,̂t must be refined as well.
3.1.2. Multiframe/multiview constraints: One may choose
any set of previously processed frames and produce virtual
frames by warping them into the pose of framet− 1 us-
ing their motion/flexion estimates. Then the multiframe mo-
tion/flexion estimators for framet are built by stacking the
dividends (and similarly, the divisors) that relate each virtual
frame with framet. The matrices are already weighted by
their certainties, so the result is a proper expectation instead
of a mere average. Evidence from multiple cameras can be
combined in the flexion estimator by similar stacking (assum-
ing identical optics and distances to the surface).

4. Model refinement
With rotations and flexions computed for many frames,
the model S can be refined to better fit the video
subject. Let R0→t and c0→t be the estimated ro-
tation and flexion taking frame 0 into framet, and

3Caveat: A rotational prior will be gaussian inR6 rather than fisherian
on theS3 manifold of rotations (a negligible difference for smallΣ′R).



N0→t
.=c>0→t⊗R0→t−c>0→t−1⊗R0→t−1. Let Ft−1→t be the

flow taking framet−1 into framet, andtt−1→t be its transla-
tional component. Then it is a tautology from eqn.(9) that
S = [⇓Tt=1 N0→t]\[⇓Tt=1 Ft−1→t	tt−1→t], where⇓ signifies
vertical stacking. However, if we rewrite this using the un-
certainty information, then we can solve for the model that
minimizes tracking residuals for the estimated motion:

Ŝ← vec
3K×N

[ [⇓Tt=1 Qt−1→t(IN⊗N0→t)] (27)

\[⇓Tt=1 Qt−1→t(Ft−1→t	tt−1→t)] ]

(Q and Λ are those of the flow-based certainty
warp.) One can calculate shape directly from im-
age gradients by replacing the numerator with
[⇓Tt=1 Λ−1

t−1→tQt−1→t(Yt−1→t−(11×n⊗tt−1→t)Xt−1→t)].
However, we found this can be sensitive to brightness
constancy violations (e.g., it causes the model to bulge at
specularities). We also found it useful to constrain eqn.(27)
to retain thex, y coordinates of the original model and to
solve only for depth and deformations by stacking heavily
weighted rows with frontal-plane-only rotations.
4.0.3. Adding detail: Model refinement makes it possible to
increase the level of detail of a model: Interpolate or extrapo-
late new points, track, then refine to get corrected depths and
deformations for those points.

5. Experiments
5.0.4. Model acquisition: We were given some320 × 240
29.97Hz video of a subject who had been motion-captured
several years ago. The video and some 23-marker motion
capture data was donated by the studio because calibration
errors had made the data too noisy and warped to be usable
for the client’s application. The images are also low qual-
ity, having low contrast and resolution, autofocus gaffes and
interlacing artifacts from an early consumer video camera.
The image region containing the face is roughly60×100 pix-
els and is quite dim, with a dynamic range of about 40 gray

levels. We obtained a 23-point model from a principal
components analysis of a random subset of motion capture
frames whose rigid-body motion had been approximately re-
moved. (We used motion capture data and video taken at
different times.) We also guessed 3 nose points. To get better
coverage of the face, we linearly interpolated between these
points to obtain a new hexagonally-gridded 128-point model

—at cost of having depths and deformations that are some-
what incorrect. None of the points in the original model were
retained. This model predominantly samples the forehead,
nose, cheeks, and lower jaw—less than 15% of the sampling
windows overlap high-texture features.
5.0.5. Initialization and tracking: The model was su-
perimposed on the face in one frame with an incorrect
frontal/neutral pose and a 20-frame subsequence was tracked
backwards and forwards several times until the model

“seated” properly on the face. The remaining 1700 frames
were then tracked without difficulty, despite interlacing arti-
facts, large rotations, motion blur, and partial self-occlusion
by hands and head turns (see figure1). This is more than
twice the longest sequence reported in [9], at roughly 1/10
the resolution (facial area), demonstrating very good resis-
tance to drift. Image gradients were sampled twice per frame;
motion estimators (eqns.(24–23)) were applied once per sam-
pling. Figure4 shows the motion parameters recovered from
a subsequence with and without uncertainty propagation. Us-
ing a refined version of the model (see below), the certainty-
weighted tracker proved to be subpixel accurate with aver-
age residual of0.0062 intensity values per sampling window.
There was one occasional systematic source of error: When
the subject turned his shiny forehead toward a spotlight, vio-
lations of the brightness constancy assumption kept the model
about 1 pixel short of the full rotation. The tracker was imple-
mented in interpreted Matlab code on a vintage 1998 Alpha
400MHzCPU; tracking rates ranged from 5-12Hz, depending
on the number of pixels sampled per frame.
5.0.6. Model refinement:We combined the model with the
tracking residuals as per§4 to refine the geometry, thereby
recovering the shape and depth of the nose as well as the
curvature of the forehead and cheeks. The morph basis was
similarly improved. Figure5 and the accompanying videos
contrast the original model with the results of refinement.
5.0.7. Super-resolution texture lifting: To confirm that the
tracking was subpixel-accurate, we took 24 tracked frames
(frames 8-31 in figure4), warped the images to a common
3D pose and expression, then combined the results to con-
struct a super-resolution image of the nose and upper lip (the
highest-texture part of the face covered by the model) shown
in figure6 (and more clearly in the electronic stills).
5.0.8. Model refinement II:A 68-frame320×240 video of a
3-year-old child was tracked using the same 26-point model
as above and then resampled and refined to 100 points. The
sequence was far too short to sufficiently constrain the small-
est deformation modes—but it did give a good shape and first
deformation estimate, as depicted in figure3 and shown ro-
tating in the accompanying video. Note that this is quite diffi-
cult because modeling a child requires substantial changes to
the shape/deformation basis and because youthful faces have
very little texture.

6. Summary

We have examined flexible 3D model-based flow and model
acquisition from video in the context of linear deformable
models viewed in weak perspective. The main results are:
(A) 3D motion/flexion estimators that operate directly on im-
age gradients and make full use of image uncertainty to yield
posterior mean estimates; (B) methods for minimizing infor-
mation loss about the measurementPDF as it is propagated
through chains of matrix operations in the inverse model;



(C) model refinement for boosting the detail and accuracy of
models. The uncertainty-informed calculations in this paper
are fast, accurate, and robust in the face of noise and degen-
eracies. The implementation tracks accurately for thousands
of frames in low-res low-quality video, giving results that ap-
pear to compare favorably with the state-of-the-art. We are
now studying more interesting camera models and the prob-
lem of integrating over uncertainty through time.
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A. Elliptical error norms
Least-squares problems such as division andSVD are stated:
Solve E .= JK− L for J or K (or both factors) such that
error norm‖E‖ = tr(E>E) is minimized. This spherical
norm tolerates error in all directions equally, whereas
spatial inference problems typically present elliptical error
norms, with error tolerated less in directions along which
measurements are more certain. We replace the least-squares
objective with an elliptical error norm(vecE)>Σ−1(vecE)
specified by symmetric positive definite matrixΣ. The vec
permits arbitrary constraints betweenall variables, even if
they are in different columns ofE (the unvectorized case is
known as weighted least-squares [11]). Setting the matrix
derivative to zero, we find that the solution must satisfy
0 = Q(vec(JK−L)), whereQ, a factor ofΣ−1, determines
the error norm that the solution will minimize (e.g.,Q = I
implies the spherical norm). DecomposeΣ−1 into unitary
eigenvectorsV and eigenvaluesΛ such thatΣ−1 = VΛV>

and defineQ .=
√

ΛV>. Then the least-squares problem
(Q vecE)>(Q vecE) is algebraically equivalent to the el-
liptical objective. Geometrically,Q rotates the problem’s di-
rections of greatest and least uncertainty into axis-alignment,
then scales each axis proportional to its certainty. For this
reason it is often called a “certainty warp,” “covariance-
weighted solution,” or more traditionally, “directionally
weighted least-squares,” a solution method for vector/matrix
problems. We generalize the warp to matrix/matrix prob-
lems such asJK = L by vectorizing with the identity
vecL = vec(JK) = (I⊗J) vecK = (K>⊗I) vecJ;
premultiplying everything by Q and divid-
ing for the variable of interest gives solutions
K̂← vecrows(K)((Q(Icols(K)⊗J))\(Q vecL)) and

Ĵ← vecrows(J)((Q(K>⊗Irows(J)))\(Q vecL)).

B. Propagating translation uncertainty
Removing translation from the flow changes the uncertainty
of the measurementPDF:

F	 t ∼ N (µF 	 µt,ΣF	t), where (28)

ΣF	t = ΣF ⊕Σt ⊕G>ΣF/N ⊕ΣFG/N ; (29)

ΣF = X−1; µt = (XG)\Y; Σt = G>X−1G/N2; and
G .= (1N×1 ⊗ ID). The last two summands in the covari-
ance account for correlation betweenΣF andΣt. Using this,
eqn.(9) is rewritten

vec((c>⊗R)S−P0) = F	 t = ΣF	t(X\Y 	 t̂) (30)

and all subsequent calculations useΣF	t instead ofΣF as
the uncertainty.



Figure 3: Five views of 3D shape and three principal deformations (closing mouth, opening mouth & raising eyebrows,
pulling down mouth corner) recovered from model refinement. All have synthetic geometry and texture.
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Figure 4: Model-based tracking results from the middle 100
frames of a joke-telling sequence using certainty-weighted
(top) and naive (bottom) estimators. Top five graphs show
(top to bottom) certainty-weighted flexions, rotation, scale,
translation, and log-likelihood (note likelihood peaks for
rigid changes such as head rotations). Bottom three graphs
show naively calculated flexions, rotation, and translation.
The certainty-weighted tracker produces a very clean rota-
tion estimate and registers the flexions in precise detail; the
naive tracker has trouble separating rotations from flexions,
particularly near the end of the segment.

Figure 5: The model before and after one iteration of tracking
and refinement, which recovers nose shape and curvature of
the cheeks and forehead. Deformations improve as well; here
the refined model is posed with the jaw raised partway. We
have also added a shaded surface to indicate depth.

Figure 6: Super-resolution from tracking. Clockwise from
top-left: (1) Close-up of a single frame. (2) The best single-
frame upsampled bicubic interpolation we could achieve by
hand. (3) A64× super-resolution image constructed by com-
bining 24 tracked frames with motions and flexions warped
out. Note the added detail at the cleft of the nose, the con-
tour between the nose and left eye, and the curve of the skin
fold that runs from nose to mouth corner. (4) Differencing
(2) & (3) reveals some pixelation artifacts and a small flexion
widening the upper lip.


	title page
	page 2

	Flexible flow for 3D nonrigid tracking and shape recovery
	.  Overview
	.  Prior flexible model-based trackers
	.  Notation
	.  Uncertainty propagation
	.  Information state

	.  3D nonrigid motion
	.  Inference from measurements
	.  Other sources of information

	.  Model refinement
	.  Experiments
	.  Summary
	.  Elliptical error norms
	.  Propagating translation uncertainty


