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Nonrigid 3p structure-from-motion and2optical flow can / B ‘
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both be formulated as tensor factorization problems. The
two problems can be made equivalent through a noisy affifégure 1. Image formation: Morph baseS)(are summed
transform, yielding a combined nonrigid structure-from-according to weightsd), rotated R), and translatedtj to
intensities problem that we solve via structured matrix degive the image projectionR). To infer S,c, R, t from P
compositions. Often the preconditions for this factorizatiors it convenient to re-order these operations as in efq. (
are violated by image noise and deficiencies of the data vigepicted here with matrix images:

a-vis the sample complexity of the problem. Both issues arg ... 0 = [ e S
; ; : ¢ R
) - T LT R
rem_edlated Wlth car(_aful use of rank constraints, norm con Ammm X 0= _—
straints, and integration over uncertainty in the intensity val- dOR Sn t )
FrlEy Taa

ues, yielding novel solutions favD under uncertainty, fac-
torization under uncertainty, nonrigid factorization, and sub-
space optical flow. The resulting integrated algorithm caare general and apply to any flexible object observeddn 2
track and ®-reconstruct nonrigid surfaces that have very lit{image) or ® (volumetric) sequences.

tle texture, for example the smooth parts of the face. Work- Our result is a factorization algorithm foro3nonrigid
ing with low-resolution low-texture “found video,” these structure and motion from video that find® Zorrespon-
methods produce good tracking and Beconstruction re- dences in the course of enforcing geometric invariants.

sults where prior algorithms fail. Taking the Tomasi & KanadeS] rigid-body factorization as
a starting point, we reconsider the uncertainty formulation
1. Introduction introduced by Irani & Anandang], the subspace formula-

. tion for optical flow introduced by Iranij], and the non-
The problem of acquiring 3 morphable models of non- rigid extension proposed by Bregler, Hertzmann, & Bier-

rigid objects has attracted intense interest in computer iz, B]. Noting their common theme—geometric invari-
sion since the advent_of deformable and_ eigen-models in the expressed as rank constraints—we generalize and in-
1980s. Current solutions address special cases of the proyate the constraints from these three subproblems. Our
lem that are well—constramed by addltlongl information. FOEolutions are substantially different from those 6f 5, 3],
example, when depth estimates are available from multip|@fe cting our identification of new constraints, new solution

cameras or laser range-finders; when the poses or artiqieihods, and corrections to errors in the prior literature.
lations are fixed or chosen from a maximally informative

set; when the surface is decorated with special textures gﬁ Notation
markers to make inter-frame correspondences obvious;
when structured light is used to reveal its contours. Thes&fe use matrix tensor operators and highly recomme&hag
methods require various combinations of high-quality highan introduction and4] for usage examples: is a scalara
resolution sources, calibrated cameras, special lighting, aigla vector,A is a matrix;[=; A;], [{l; A;],[X,A;] are hor-
careful posing. A second class of solutions relaxes imageontal, vertical, and diagonal concatenations, respectively.
constraints but depends on having a precomputed classIofs the identity matrix;0 and1 are the zero and one ma-
possible modelsl] or motions (as used ir8] for tracking).  trices. Matrix dimensions are indicated in subscripts (e.g.,
In this paper we consider a relatively unconstrained casé:,,.) or determined by conformanceA T denotes trans-
Single-camera video in which the surface is freely movingose; vector-transposk(?) transposes matriA with each
and articulating. There are no shape or motion priors. Weertical group of elements treated as a unit; block-transpose
only require that the surface be at least sparsely textured,("7) does the same treating each block ef j elements as
and that lighting changes, if any, be slow relative to the unit. ® denotes Kronecker (tensor) product; denotes
object’s physical motion. The texture can be partially deHadamard (element-wise) product; denotes tiled addi-
generate everywhere the image is sampled, as long as ittisn, €.9.,Agx2 © Baxa = Agxa + (13x1 @ Baxa). VECA
not all degenerate in the same direction. We consider lowectorizesA by stacking its columns and veA,.. =
quality sources that are difficult to constrain, for examplecvecA)(“ folds (vecA),.x1 into a matrix havingre/i
pre-existing footage or home movies of young children. Irolumns ofi elements eachA /B andB)\ A denote right and
this paper we will work with faces and video but the method#eft division; AT denotes Moore-Penrose pseudo-inverse.


http://www.merl.com/people/brand/
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We begin with a simple model of image formation, depicted ‘qmmmm ~— EEEEIENS | e
in figure 1. Observed shape is a weighted sum of morphM s SHEENNE 7' Pressssr.

bases, rotated int§ projected onto the image plane, andrigure 2: The forward model for multiple frames (ec®))(
translated in that plane. We write the projection in frafne showing the structure of the motion mati (egn. @)).
as P; = (c] @Ry)S @ty (1) Each block inM is a scaled rotation matrix; its rows have
: . equal norm and are orthogonal. Moreover, its first row is or-
The rows of S contain the z,y,z ordinates of
the K morph bases forN points: Ssxxny = thogonal to any second row taken from blocks to.the left and
) x right. Ansvp of P © T produces a pseudo-motion matrix

T .
[S12, 81y, 812, 820, 82y, 82, .., Sk 0, 8Ky, SK2] - With- M = MJ and pseudo-shape mat$= J—'S, whereJ is
out loss of generality, we assume that the row sums are zerg '

(Written Ss 1 = 0). By convention, the first morph basis an arbitrary unknown fl_JII—r_ank matrix. _Successful fact(_)riza-
. x1 ' ’ tion thus depends on finding a correction maffithat will
gives a scalable mean shape and subsequent morphs deforn1 h iate structureNb ands
it. These are combined according to the veat@r,; of restore the appropriate structure¥bands.
morph weights, which fixes both expression and scale. T

: . rfﬁformation' the matching right singular vectors form the
O;thgféﬁogtﬂxg[ﬁ netffectstrgnga;gtsa;ur?en ?g'((jac?on pseudo-shape matri. Assuming that rigid shape statisti-
project o Dx1 project cally dominates the data iR, the remaining vectors contain

;1 thriQiTnZ?i?)np!znfiil Tehr': chilv\ge?g.g;ir(iﬁiﬁg\ﬁvg;ﬁgivl’eﬁﬂformation about violations of the rigid-motion assumption,
bp persp proj e.g., nonrigidities and tracking noise.

when the depth variation within the object is small relative
to the object’s distance from the camera—typically the casg 2 corrective transform

for consumer camera wdeog_raphy. T . Thesvb determines both sides up to an invertible &fine
ForFF > K frameg we deflan =¢ ®.Rfv Crxr = transformationGs, s such thatMS = (MG~ !)(GS) =
(=1 €], andTprx1 = [Uf ty], with projections MS = P; one must solve for &~ that restores orthog-
Pprxn = [y P =MS& T, where (2) onal structure taM in order to get proper rotations and
Mprxsx = [l My] = [N, Ry](CT @ I5). (3) shape. Let the row vectomsi| ,m/ < M be thex and
y components of framé’s projection. Then the orthogonal-
ity of m{ = m/ /G andm/ = m/ /G gives the con-
straintVg,r oy /GG~ 'y, —@] GG Ty, =

This is depicted in figur@. Much of this paper will be de-
voted to the special structure of the motion matvik
Our first goal is to infelS, R, C, andT from the inter-
frame correspondences . Often these correspondenceshzG—lG—Trhfy = 0. This system of constraints is lin-
are unavailable or very hard to compute§éwe will lever-  ear in the six unknowns of symmetrd = GG~ T,
age our analysis into an algorithm that estimates all variablgghich can be obtained via standard least-squares methods
including P directly from video. from a system of linear constraints (with the added constraint
Assuming for now that that all points are observed in aI{thz(;—l(;—Trhlw = ¢ > 0 to fix the scale ofG). Be-
frames, the translatiors can be estimated as the row-meangauseH is symmetric, the constraints on it can be expressed
of P and then removed fror® so that all rows inP © T  very concisely: Define vecH to be the vector of the lower-
are zero-mean. TheR © T can factor into pseudo-motion triangular elements di, and vecd = vechH + H' —
matrix M and pseudo-shape/morph basis maBixM in  H ©I). ThenH is the least-squares solution to the overcon-
turn can decompose into pseudo-rotations and pseudo-moiifained system of linear equatidv@gﬁl; T N

weights. There are infinitely many such factorizations and e T TT
we must solve for one that yields proper rotations and max{Vec81y, m;, — 1y, iy ) vechH = 0, (equal norn(#)

imal error reduction per morph. As with many multilinear (veCS{rhfwrhfZ))T vechH = 0, (orthogonall5)
phenomena in image formation, the key to a successful fac- (vecgm,; 1, ))" vechH = c. (fixed scale)(6)

torization will be the identification and exploitation of rank

and norm constraints on substructures in these matrices. is estimated from the eigen-decomposition

VAVT & HasG!' — VyVA. This assumes that
3.1. Rigid-body factorization H is positive definite, which is not always the case, leading
In the K = 1 case ofrigid-body motion the rank theorem to nonpositive eigenvalues iA and a complex-valued or

of Tomasi & Kanade §] asserts that a rank-3 thin singularfank-deficientG™". In this case we suggest approximating

value decompositions/p) MS &2 P & T will factor mo- G from ansvD of H, then turning to the fixpoint

\/ \ / T
tion and shape information from tracking data. The pseudo- G — G([ly MyG]\[Uy (M;G) e @)
motion matrixM of left singular vectors associated with theThis solves for the transform that brindd;G closest to
three largest singular values contains the r8tation/scale (MfG)TT' with equality for proper rotations.



3.3. The nonrigid case generating basis BHB this paper

Bregler, Hertzmann & Biermani8] recently proposed a di- ﬂ\ v v
. . L N N 4 W 4

rect extension of the above algorithm to the nonrigid case| _

For K morph bases one performs awp of P © T and |-

retains the toBK singular vectors on each side to obtain (= # » N

V S - &
MpryskSskxn < P o T. The shape matri$ of -

right singular vectors contain& morph bases. Each set '
of D rows in the motion matridI of left singular vectors
is rearranged as if it were an outer product of rotation co-
efficients and deformation weights, then factored as suc
via a second round of rank-dvps: V; (vecR;)Cy &
vVeGp 1\7If. The rotations and shape/deformation ma- -\
trix are then affine corrected as i§3.2  This as-
sumes that the 1stvD leaves the singular vectors consis- '
tently signed and ordered by morph and dimension (e.g.
S = [Sly7_Sll‘?SlZ?SQ'yv_52175227"’75Ky7_SKm’SKZ]T | e By
wheres,,, is thexz component of the second morph basis).| = = + *
whereas thesvD not only reorders but actualiyixesthese

. . _1 o as ° - ° a5 ° o o as 0 "
channels with an unknown affine transfo; 5 —ON€  pigyre 3. Reconstruction of a curved surface and two

that maximizes C(_)ncentration of variance in the top s_ingu eads” that move independently on horizontal tracks. Dots
lar values. The singular vectors are also randomly signegy, ., average point locations: quivers show direction of mo-

Fortuitously, in most human faces the first four channels qftn for positive morph weights. @ UMN 1: The linear ba-

greatest variation are head height, width, depth, and verticgl o ysed to generate test data: shape/scale; upper bead mo-

jaw motion §1,, 1,51, 82, -..), SO that shape and perhapsq . |ower bead motion. GLUMN 2: Shape and deforma-

the first morph Wlll be pIaysane, but qfter that the orderlng{iOnS recovered by BHB factorizatios][of 2D projections.

of t_he channels is unpredlctaple, Iea}dlng to mutual contamsne pead is misplaced in depth; there is no independent mo-

hation _Of the morph and rotation estimates. .. tion of the beads (except that the upper bead is allowed a spu-
A simple example shows how the BHB factorizationjo,s motion in depth); and all deformations have torsions

heuristic is vulnerable to less fortuitous datasets swids: 5t compensate for incorrect rotation estimate.L QN

Imagine a child’s toy with two beads that ride on horizontak. A correct shape/deformations basis recovered from the

rails. The toy has 8 shape and two independent modes 0fame data by the method given below. ( Adding or subtract-

deformation. BHB factorization requires rank-9 data to dejg the deformations gives isolated motion of either bead.)
termine shape and two modes of deformation, but the track=

. ; . . . orm and are orthogonal. Moreover, they are orthogonal to
I k- h fch I ’ ;
ing data is only rank-5 (with a mix of channe sapproxmate('i] T and me-x taken from any block to the left or right

by the ordering1,, s1,, 82, S35, 51.), Which means that re- /. i,
gardless of the amount of data, BHB factorization can onl{y 7 k), because these blocks are all generated from the
recover two morph bases (shape and a single deformatiogfMe rotation. The exact set of necessary and sufficient
that combines the motions of both beads in way that madjerm/orthogonality constraints thi must satisfy are sum-
not be physically valid). The misordered singular vector1arized by the quadratic equaliti, .y,

also lead to incorrect rotation estimates, which contaminatévecM; )(vecM/ ) = 5Ip ® ((vecM;)(vecM;)). (8)
morph bases with torsions and, in the presence of noise, can® .~ _ sb -7 8D

create additional spurious morph bases (e.g., column 2, roafc€M = MJ ™, solution of eqn.§) in the least-squares

3 of figure3). One can cyclically re-solve for each &, SE€NSe is eqw\_/algnt to minimizing alsystem of_ p_olynomlals
¢, § given the other two (solutions are given &) but we that are quartic in the elements &f . In the rigid-body

. ) . ; ; iniaT—1
found that this often converges to a mediocre local optimunf@S€: €dné) is strictly quartic inJ ™ and can be approached
as a squared-squared-error problem via nested least-squares

. procedures. This is the strategy§¥.2. In the nonrigid case
3.4. The corrective transform problem this strategy does not apply because eghig both quar-
The crux of the problem is finding an optimal correctiontjc and quadratic i —!; the first least-squares procedure in
3k xsx that transforms the result of thevp into a prop-  §3 2division—obliterates information about the quadratic
erly structured motion matrixNI — MJ~'). Recall from terms that is needed by the second—eigen-decomposition.
figure 2 that eachD x 3 block My, € M is a scaled ro- Direct solution is a very difficult problem so research has
tation whose rOWSnfTM and mTM effect thex andy im-  centered on finding numerically well-behaved heuristics. For
age projection of one morph basis; these rows have equatample, the BHB factorization sels— Ix ® G, a block-

w

S

e




diagonal correction that assumes that #wpd correctly or- BHB heuristic) and construct a properly structured motion
ganizes all of the information about a morph basis in the apnatrix from the result. Both methods have weaknesses and
propriate column-triple ifVI. we have found a third procedure which appears to be more
Numerical experiments with projections ab 8ata whose robust for 2 data (for 3 data,$B eqn. @4) appears to be ro-
principal components are known indicate thias dense, par- bust): First we flip signs of the left singular vectorsv to
ticularly above the diagonal, meaning that thed mixes minimize the squared-error vis-a-vis the norm/orthogonality
variation due to minor deformations into the shape and prirconstraints of eqn8). Sign flipping leads to better rotation
cipal deformations. In fact, it is quite difficult to constructestimates and it can be done efficiently by caching interme-
a dataset for whicld has anything vaguely close to block- diate results. Short-distance column-swaps can be evaluated
diagonal structure—even with vast amounts of noiseless syi- the same manner. We then affine-correct each column-
thetic data. Our experiments suggest that the scale of the deple in M as in§3.2 and d-rotate each column-triple to
formations must drop off quadratically in order for the initiala common coordinate frame. We then stack all column-
svD to properly group their:, y, ~ components. Even then, triples in M into M(2#3)| compute a corrective transform
it is unlikely that the components are consistently ordere€—! as per§3.2, and apply it to all column-triples oM.
within all groups. For each transform td/I a compensatory inverse transform
In appendix§B we give one of a family of solutions that is applied toS. We then factor eacMl; € M into rotation
generalize the corrective transfor§3(2) to nonrigid motion. and morph weights using amthonormal decompositiaii2]
However, all such solutions are plagued by rank-deficiendat directly factors a matrix into a rotation and a vector. We
problems because the number of unknowns grows quadr&ten construct a properly structured motion malvix plug-
ically while the rank of the constraints grows linearljz*  ging the initial estimates aR andC into eqn. §). Unlike
has9K? unique elements while there at& nonredundant the BHB procedure, each column-triple has a unique cor-
constraints perM; € M. Moreover, in casual video, the rection and we have orthogonalized the pseudo-motion ma-
motions in most frames are highly redundant and contributgix withoutinformation-lossy factorization int&; andc;.
few new constraints. This sample-complexity problem is &lowever, we have only estimated elementd of in a band
property of image formation, consequently any correction apround the diagonal; the remaining far off-diagonal elements
gorithm based purely on the expected structure of the motiomll be recovered in the next paragraph.

matrix will fail as the number of morph modes grows. Combining the constraints from the motion and shape ma-
trices, we obtain the objective function
4. Flexible factorization miny tr((VLJ — NO)T (VT — M) + tr(§T3T2IS). (9)

Our strategy is to bring in constraints from the shape/morpfijs seeks the operatdrthat brings out the expected struc-

maitrix S: The deformations it$ should be as small as pos-yyre in VI with the smallest possible deformationsSnThis

sible relative to the mean shape, so that the observed diror is minimized by the solution to the system of equations
placement of projected points away from the object-centriggy — N1 andZJS = 0. J is obtained from the sparse
origin are explained mostly by the object’s shape and resigyision

ually by its deformations. Equivalently, whenever possi- - Iiyx @M vecM
ble, point motions should be explained parsimoniously by J = ‘é?(c( { $Te7Z }\ [ D (10)
rigid transforms (rotations and scale changes) rather than R - R _
unparsimoniously by combinations of deformations. Othfrom which we calculat® < JS andM «— M/J or simply
erwise all motion could be explained as deformations. LeteepR and re-estimat€. Since eqn.10) uses information
S = SJ be the corrected shape/morph matrix and defini both sides of thesvp, it is well constrained. In practice,
Z =1; ®diag0, 11« x—1]. We want to minimize the Frobe- we find that the upper triangle and several subdiagonals of
nius norm ofZS, the part of the shape/morph matrix thatare usually dense, indicating that information about any one
contains deformations. deformation is indeed spread over several columrislof

We now have two constraints—structure of the motion Eqn. (L0) is a regularization that enables good factoriza-
matrix and parsimony of the deformations. The problem iions from very small datasets. It could be used iteratively
that the motion matrix gives constraints dn' via M =  with refactorizations oM, though we do not.
MJ !, while the shape/morph matrix gives constraintsJon
via§ = SJ. To work around this algebraic inconvenience 5, Using image gradients

we rewrite our motion constraint 8dJ = M, whereM is ) ) . .
an initial estimate of the corrected motion matrix. The above algorithm can be recast entirely in terms of im-

age gradients, which are linearly related to motion in the

O3 Nx1

To make our initial estimatd1, one may uséB (or the

=~ EIG
10ne norm and one orthogonality constraint per block; two orthogonal- “Calculated asA — ((vee; p Mf)hl)(D)v VAV — (AAT)pxp,
ity constraints from from the first block to each block to its right. R—VA~1/2VTA, &« ((vecR)TM)T /D. See p] for derivation.



setting of optical flow: Consider a small regiddin im-  simultaneously track 8D nonrigid surface and acquire its
age Iy that shifts to a new location in imagg. As- 3D shape/morph basis simply by manipulating the rank of
suming it views a constantly illuminated Lambertian surthe flow calculations.The rigid-body equivalent of this as-
face, its optical flowfp.; may be estimated (to first- sertion was first noted by Irarb], whose rank-reduced flow
order) from spatial image gradier¥, = dly(p)/dp as algorithm was based on the premise that flow and associ-
e X\y where the spatial variation within framg is ated temporal image gradients from a reference frame to ad-
X pxD ng vpvg dp and the temporal variation betweenjoining frames are bilinear products of two matrices whose
Ip and Iy is ypx1= [,(Io(p) — I1(p)) - Vpdp. Good es- low rank can be deduced from the camera and scene type.
timates ofX are usually available byt is sensitive to noise Our forward model similarly implies that rank-reduction of
in the image intensities. Assuming this noise is gaussian dik: © Po©PoST to rank3 K will force the motion data to be
tributed, X has special significance as the inverse covariané@nsistent with the subspace of plausible nonrigidn3od-
matrix of the flow estimaté—its eigenvectors give the di- €IS. Moreover, since temporal intensity gradients are locally
rections in whichf is most and least certain. linearly in motion Y = XF = X(P © Py)), uncertainty-

We will represent\ local flows to each of” images si- informed rank-reduction of the temporal intensity variation
multaneously in the stacked matri@s  x r, Y oy« and  matrix will similarly constrain the flow to lie in the same
diagonally stackedX . pn. X describes spatial varia- Subspace. The key is to manipuld¥€ (eqn. (.2)) so that
tion around landmarks in a reference frame; each coluniR€ rank constraints implied by eqi3) are applicable. This
Y; € Y describes temporal variation between the referis accomplished by the intensity-based factorizatiofAri.;
ence framel, and target framd;. Without additional con- We also give a more efficient alternate procedure:
straints,Y = XF. The covariance of the uncertainty¥his We begin by computingX from image patches within
Sr = X! converselyBy = XZpX ' = X. a reference framd, and Y’ from comparisons of those

We will now show how all of the operations of the pre-Patches to similarly located patches in all other frames_. Be-
vious section can be applied % and'Y;. First we eigen- CauseMsS has rank3K’, eqn. (L3) tells us thafy” has maxi-

EIG

decompos&’AVT ££ ¥y = X and useQ = A~1/2yT  mum rank3DK . We eigen-decompoSéAV T «— Xy, =

for certainty-warped operations dri. Q warps a problem X and useQ = A~'2VT in a certainty-warped thisvp

having an elliptical (mahalanobis) error metric to one having USWT "2 QY. (14)

a spherical (Frobenius) norm, so that minimal mahalonobi%-mceQTQ — X1, the producQ T USW T ~ X-1Y’ =

error solutions can be obtained fr;’m least-squares procg S)(P) is the unc'ertainty-informed reduction of the inter-

durtes SUCht as rr|1att.r|x d,MS'O” asyD”. We use this to esti- frame correspondences to raBk*K (modulo translations).

male pure transiations. ; Rearranging the product to conform wiMS licenses the
Torx1 — ved((QX(1nx1 @ Ip))' (QY))pxr]  (11) fina| rank-reduction to rankK:

This is a certainty-warped calculation of the mean dis- rcixrt T SVOsK AT (D)

placements. (The pseudoinverse is quickly computed us- Uxwe — _(Q UEW_ ) h _(15)

ing QR-decomposition and inversion of the resulting uppefFinally, we restore translations to obtain point locations:

triangularD x D matrix.) We now remove translation and Pyyxpr=USWT @TaP,. (16)

incorp_orate position into the temporal intensity variationsyg,y temporal image gradiernt&ney are sampled w.r.t. these
obtaining v -y | X(PooPooT) (12) correspondences, and the process repeats until convergence.
where P are the locations of reference texture patches ifhis is simlar in spirit to Irani’s ] rank-reduced flow but
the reference frame arll, is their centroid. Y’ is now a differs in that @) it handles nonrigid scenes and objects;
function of rotations and deformations only, satisfying (B) it properly certainty-warps the intensity variations w.r.t.
P= (X\Y’)(D> — MS. (13) their own uncertaintyprior to svb; and () the rank con-
Appendix §A details how to factor the zero-meaned correstraints arexactbecause they are inherited directly from the
spondence estimatd® w.r.t. their uncertainty (covariance forward model. The results of eqrig) are useful beyond
Ix\yr = ZF = X1 into M, S; appendix§A.1 shows rank-reduction: We use pseudo-motidvis U’VX and
how to do the same factoringdjrectly from intensity varia- pseudo-shap8 «— +X'W’'T to “grow” the sequence by
tions Y’ w.r.t. their uncertaintySy, = XXX ' = X. The predicting correspondences in new frames via linear extrap-

flexible factorization o4 applies directly to the results. olation of the rows at either end dfl.
o The factorization constrains the search for correspon-
6. Nonrigid 3D subspace flow dences; the search provides information for the factorization.

As the process grows to cover the entire sequence, the space
of possible nonrigid 8 models becomes increasingly con-
strained. For online tracking, we obtain extra efficiencies by
(i]sing an incrementadvD that reduces computational com-
plexity and automatically resolves temporary occlusions.

The fact that nonrigid motion is a low-rank multilinear pro-
cess has an unusually useful implicatiom:is possible to

3These “covariance-weighted” methods have a long history as “dire
tionally weighted least squares” in matrix algebra.



7. Examples algorithms based on the forward model's geometric invari-

We began with 61 contiguous frames of 29.97Hz interlace"i’ir.‘ts can be Qefeated b.y properues ofg;lvoa t.h.at areat odds
320 x 240 video captured from a rented VHS video tape with t_he desired factprlzatlon, so we identified an addmo_nal
The scene rapidly cuts back and forth between a restauraR?Ls'mony Zons\}\r/am:] and used it _to develé)p a dcorrecnoln
patron and a waitress; we modeled the patron’s face, whidf the svb (§4). We then gave an improved and genera-
averages 80 pixels in height. We chose roughly 90 poin@ed method for factorization of correspondenaemtensity

on his face in a reference frame, and ran tiefBw algo- variationswith respect to uncertainty in the image sequence

rithm with 4 morph bases to find correspondences and 3(§5&A)' Th!s led t'o. a.solut!on for morphable3nodelsdi-
structure in the remaining frames. Note that this is quite ur{—eCtIy from. intensitiesn which mterframe correspondences
constrained video—there are no markers on the face, sofl&" found in the course of computmg the factorizatig) (

of the points have almost no local texture, there are lightin esegch now focuses ona refinement scheme for full per-
changes, the camera parameters are unknown, and ther Rgctive and more sophisticated models of texture flow.
motion in the background. Some points are also occluded R eferences

head turns. To see whether the algorithm could handle dis-

continuous video, we added four more sequences totalling 8] V. Blanz and T. Vetter. A morphable model for the synthesis of
frames from adjoining camera cuts. The Bow algorithm 3D faces. InProc. SIGGRAPH991999. .

found correct correspondences across the camera cuts &fidM- Brand. Flexible flow for 3D nonrigid tracking and shape
in all the remaining frames. In most frames the head fac recovery. InProc. CVPR2001.

f d with I . f the f I ?§] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-
orward with very small rotations out of the fronto-paralle . rigid 3D shape from image streams. Pnoc. CVPR 2000.

plane; in the last sequence he looks down at a menu. Despii¢ G. Golub and A. van LoanMatrix Computations Johns Hop-
the rather spare rotational depth cues, the recovered model, kins U. Press, 1996.

shown in figure7, has good B shape. We used the model to[5] M. Irani. Multi-frame optical flow estimation using subspace
render “® video” in which the video plane is deformed ac- _ constraints. IfProc. ICCV, 1999. _
cording to the recovered depths, then viewed from an angl@.] M. Irani and P. Anandan. Factorization with uncertainty. In
Figure4 shows 3 original frames and synthetic “side views. Proc. ECCY 2000.

) g?] J. R. Magnus and H. NeudeckeMatrix differential calculus
We also took 490 frames from an old home video of with applications in statistics and econometritsiley, 1999.

3-year-old telling a story. Due the the child’s smooth sking] C. Tomasi and T. Kanade. Shape and motion from image
and blonde coloring, there is very little texture to support streams under orthography: A factorization methénterna-
feature tracking and indeed, local feature trackers typically tional Journal of Computer Visigrd(2):137-154, 1992.

failed within 50 frames. The 3 flow algorithm of§6 was . . .

initialized with 100 points on the face?‘ound by an interesA' FaCtO“ng with uncertalnty

operator in a single frame, and successfully found corresporlere we derive a method for factoring uncertain nonrigid
dences across the entire sequence, concluding with a corréracking data. The rigid case was first treated by Irani &
tive transform to give the 3 model used to generate the im-Anandan g]. We correct some small errors and use a new
ages in figurés. Figure5 shows the recovered motion param-solution method to generalize to nonrigid motion and var-
eters. The original Irani subspace flow algoritfshdoes not  ied uncertainty structures. To facilitate comparison with the
successfully track this sequence, even when modified to usgginal paper we use I&As variable names and convert to
the same rank constraints as our version. The image coribeir matrix organization:

spondences found by our algorithm were fed into the original The D-interleave matrixE’ . is a permutation ma-
BHB algorithm, which failed to separate jaw motions fromtrix with E; |;—1)/p|+N((i—1) mod D)+1 = 1. Postmulti-
head rotations (jaw openings have a slight negative correlplication with E rearranges a matrix with columns repre-
tion with the pitch of the head around the model centroidsenting interleaved (e.9z1y12122y22223y323 . ..) data to

producing a model with an inverted jaw (figuderight). a grouped form (e.9.z12223y1Y2Yy3212223 - . .); postmul-
tiplication with ET does the reverse. We ud to rear-
8. Summary and prospects range the block-diagonal inverse covariance ma¥Xixto
form a striped matrixX’ = ETXE for the calculations

We have presented a linear framework for recoverimg 3
shape, motion, and articulations of nonrigid 8bjects from We eigen-decompos@AQT << X’ and compute a right-

video. Factoring morphableb3models from ® correspon- X ;. S
dences is a quartic optimization problem, for which we prehanOIeOI certainty warRy’ = /A, that maps the direction-

sented {B) one of a family of formally “correct” solutions ally _Welghted I.east-squares problem implied %y onto an
. - . uivalent ordinary least-squares problem.
based on cascaded matrix decompositions that generalize s

oo . 2 e split the tracking data into new matric&% g, v,
classic rigid-body structure-from-motion factorization. A”VF><N1 and (optional)W », x containing horizontal, ver-

“4Thanks to Rahul Bhotika for this sequence. tical, and (optional) depth ordinates fd¥ points in F'

below X = EX'ET recovers the block-diagonal form).




frames. We desire a factorization into pseudo-shape mbe applied directly téY” simply by replacing the left hand
t[ix~SngN and pseudo-motion matriXI p r» 3 Satisfying side of eqn.17) with Y'TEQ'A L.
MS = [UV,W]|EN) = [T, vT WT]T, with any resid- L. .
ual having minimal mahalanobis length w.r.t. the metric deB- Nonrigid corrective transform
fined byX. We rearrange the tracking data into a horizonere we generalize the correction§#.2 to estimate a cor-
tally stacked matriXU, V, W] in which each row describes rection matrixJ = M\M. We breakM into K column-
a frame; this places all variables whose uncertainty is COfriples, each being a stack of rotation matrices scaled by
related in the same row so that the certainty warp can Borph weights. Lein! ,m] € M; € M be the rows
applied. The identityC,,x. = A, x,B < C"9 = . L el fhy S
e rpXe T SirpXq _ . in column-triplek giving thex andy projections in frame
A(m9)(I, ® B) allows us to rewrite the target factorization f. As in §3.2, these vectors should have equal norm and
as v & be orthogonal. Morever, their projections onto vectors from
1 _ nf(F.3K) ’ g ) proj
[[_I’V’W]Q M . Ip®S)Q’. (17) _other column-triples should also have equal norm (because
We begin with a thin 5'”9U|aSrVD value - decomposi-y| column-triples have the same rotationg)y, ;
tionHpw3px AsprxspkGaprxoy  —— [U,V,W]Q/
to suppress noise under a mahalanobis (elliptical) error met-
ric specified byX'. We mustunwarpto remove the bias ~ Sincern; = m/ (J7!)coi3r—2:31), for each value ok

introduced byQ’, using a smallesvp: HAGT “22x  andj this yields a separate linear system Ij&2 eqns. ¢-
~ = y ~ = = Y 5) giving constraints on a matri; ; (with vecs and vech
AGT/Q’ to obtainH «— HHA'Y? andG — A'/2GT. : . A

(Witho/tft2 unwarping e;ects o)’ will persig into the fi- replaced with vec fok 7 ). EachH,; is the outer product

. e
nal result as shape distortions.) N@RG is the best (min- of two column-triples i.J~"), e.g.,

imal mahalonobis-error w.r.X’) rank3DK approximation ~ Hij = (37 )coisisk—2:3) (I )corgzj .35y and  (21)
of [U,V,W|. For gaussian uncertainty this maximum likeli- ~ H = [||& [:>§< Hy ]| = (37HBED(J-1HBEIT(22)
hood estimate also has maximunarginallikelihood, which ¢ symmetric and should have rank 3. BAV T £% H be
means that we have effectively integrated out the uncertamytruncated decomposition B using its three largest eigen-

in the temporal intensity gradients sampled from the imageg,)es and their associated eigenvectors. Then the desired
We must makeH and G consistent with the tar- correction is(J—1) = (Vy/A)BK3).

get factorization (eqn. 17)) by ~f|(r;d3|?<g); an |rD/1ert|bIe Although formally correct, this procedure is of limited use
transform Dsprexsp i _SUCh thatM™ = _HD and  pecause without additional constraints on the structutk of
DG = (Ip@S).  Using the above identity, we note the constraints on aHly, ; are highly redundant, with insuffi-
that [U, VWM~ (HG)™N = MS = cient constraints to determine all element&in In practice
(HD-1)(F3K)S = (Ip @ H)(D~!)BPK3K)S, which im-  H, ; contains enough constraints to support an estimate of
plies that the desired transfof and shap& can be recov- the first three columns al !, from which we can calcu-
ered directly via the ranR¥K decomposition late the first column-tripl&I and with it a good estimate of
—— (3DK,3K) 2 sy all rotationsR (provided thatH; ; has exactly three strongly
D~ S = (Ip@H)\(HG)!"™Y) (18)  dominant eigenvalues). If working witro&orrespondences,

_ (ID®3_1/2I’—:ITI:IT)(HG)(F’N) such as motion capture or MRI tracking, the equality

In contrast to @], this correctly unwarpsthe results of the M = MJ = [N Ry|(CT® I5)J = [\, R,|(I®C)®)
first svD, handles dense uncertainty covariances, and give§ a ; . - (23)

i ) ——— eads to a direct solution for all remaining unknowns
fully constrained solution foD—1.

[mfk:,mm)—‘;z = mfk:,y;m;;y] and[mfk,mm;;’y = O] (20)

IOE (xR "M (24)

A.1l. Factorization from intensity gradients With 2D dat S84 into th h |
We can factor directly from intensity variations, which ! _1D ata, one can pi‘ile into the space orthogona
10 J Coig(1:3) @nd solve fod that will produce a second

egn. (L2) relates to shape and rotation changes through m ~ cols(4:6)
trix Y’ = X(MS)(P). Equivalently, to use the notation of column-triple of M that is consistent with the rotations. In
A, YTE = [U,V,W]X’. Because the uncertainties informulee: We projecM’ «— M(I — J 1.0 (I ig.s)) ")
Y'TE a||1d [IhJ,_V,W] have covac;i?ncex’ and Xl'fl reé and solve the linear systewy M; J'R/ —M; J'R/ =
spectively, their certainty-warped forms sgquivalentan BT N BT A YooY
interchangeableThis means that the factorization§4 can My IRy, = My J'R; = 0 for J usllng the identity
ABC = (C'" ® B)vecA to obtainJ_ — (I-

If not unwarping, one can use the identity _ 5 1 cols(4:6)
(14@Srxn)Adrxg = Barxg <= S — (vec. B(M)/(vec, A™) to Jcols(l:S)(Jcols(LS)) )J’. We then recursively solve for the
extract a certainty-weighted estimate of shape fio@ = (I,®S)Q": remaining column-triples. Again, the quality of the result

S < (vedDG) 1)) /(vecQ' M) (19) depends on the eigenvalue structurekbf,. We are now

For block-diagonak this gives independent equations for each point.  Studying how this relates to the quantity and quality of data.
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Figure 6: Original frame and three synthetic frames rotating the face, closing the mouth, and pursing the lips. At right is the
base shape obtained by feeding the correspondences into the BHB factorization, which inverts the jaw. The graph shows that
the flexible factorization estimates morph bases that more effectively explain the data.
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Figure 5: Morph, rotation, scale, and translation parame-
ters recovered from the preschooler sequence. The high fre-
guency fluctuations record mouth motions while talking.
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Figure 7: Front and left profile views of & = 4 model
recovered from 148 frames viao3low (see figured). First
Figure 4: Cropped video frames and synthetic profile viewgeformation (thickluearrows) raises eyebrows and tightens
showing 3 recovered for the front half of the head. Themouth; second deformationienarrows) opens and closes
rendering is not anti-aliased, and inherits compression amflouth; third deformation (thined arrows) widens and nar-
interlacing artifacts visible in the original low-res frames.  rows mouth. Dotted lines outline the mouth and eyebrows.
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