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Figure 1: An object modelledby traditional polygon techniques
may lack someof the richnessof real-world objects,but behaes
properlyunderzooming,(b).

Abstract

Image-basednodelsfor computergraphicslack resolutioninde-
pendencethey cannotbe zoomedmuchbeyond the pixel resolu-
tion they were sampledat without a degradationof quality. Inter
polatingimagesusually resultsin a blurring of edgesandimage
details. We describeimageinterpolationalgorithmswhich usea
databasef trainingimagesto createplausiblehigh-frequeng de-
tails in zoomedimages.Imagepre-processingtepsallow the use
of imagedetailfrom regionsof thetrainingimageswvhichmaylook
quitedifferentfrom theimageto be processedlhesemethodre-
sene fine details,suchasedgesgeneratebelievable textures,and
cangive goodresultsevenafterzoomingmultiple octaves.

1 Introduction

As shavn in Fig. 1, polygon-basedrepresentationsof 3-
dimensionalobjects offer resolutionindependencever a wide
rangeof scales.Objectboundariesemainsharpasone zoomsin
on the objectuntil very closerange wherefacetingappearsiueto
finite polygonsize.

Constructingpolygonmodelsfor comple, real-world objectscan
be difficult. Image-basedendering(IBR) is a complementanap-
proachfor representingndrenderingobjectsusingcamerago ob-
tainrich modelsdirectly from real-world data.Unfortunatelythese
representationso longerhave resolutionindependencéaVhenwe
zoominto a bitmappedimage,we get a blurred image.Figure 2

shaws the problemfor an IBR “version” of teapotimage, rich

with real-world detail. We know theteapots featureshouldremain
sharpaswe zoomin onthem,yetstandargixel interpolationmeth-
ods,suchaspixel replication(b, c) andcubic splineinterpolation
(d, e), introduceartifactsor blurring of edgesFor imageszoomed
3 octaves,suchasthesesharpeningheinterpolatedesulthaslittle

usefuleffect (f, g).

A methodto achieve higherresolutionviews of pixel-basedmage
representationsyhich we will call supetresolution,would have
someof the bestof both worlds, complex modelsand resolution
independencedn addition,mary otherapplicationsn graphicsor
imageprocessingouldbenefitfrom suchpixel resolutionindepen-
dence suchastexture mapping,enlaging consumeiphotographs,

and converting NTSC video contentto HDTV. We don't expect
perfectresolutionindependence—ven the polygonrepresentation
doesnt have that—hut increasingthe resolutionindependencef
pixel-basedrepresentationss an importanttask for image-based
rendering.Our example-basedsupefresolution algorithm yields
Fig. 2 (h,i).

2 Related approaches

Figure3 shavs severalcomplementaryvaysto increasehe appar
ent resolutionof an image: (a) sharpening(b) aggregation from
multiple frames,and (c) single-framesupesresolution.We feel
eachshouldbe usedwhererer possible.Sharpeningamplifiesde-
tails that are presentin the image.Integrating resolutioninforma-
tion over multiple framesis sometimegalledsupefresolution.For
thepurposesf thispaperwewill alwaysmeansingle-framesuper
resolution.

Supetresolutionrelatesto imageinterpolation—hw shouldone
interpolate betweenthe digital samplesof a photograph?Re-
searcherdiave long studiedthis problem,althoughonly recently
usingmachinéearningor samplingapproachesyhich offer much
power.

Cubic splineinterpolation[9] is a very commonimageinterpola-
tion function, but suffersfrom blurring of edgesandimagedetails.
Recentattemptdo improve on cubicsplineinterpolation12, 16, 3]

have metwith limited successSchreibeandcollaborator§12] pro-
poseda sharpened>aussiarnnterpolatorfunction to minimize in-

formationspillover betweemixelsandoptimizeflatnessn smooth
areasSchultzandStevensor{13] have useda Bayesiarmethodfor

supefresolution but hypothesizedhe prior probability

Theseanalyticapproachesftensuffer from percieredlossof detail
in texturedregions.A proprietary undisclosedlgorithm,Altamira
GenuineFractals2.0 [1] (an Adobe Photoshoplug-in), doesas
well asary of thenon-training-basethethodshut still suffersfrom
blurin regionsof textureandatfine lines.

2.1 Example-based approaches

Onewould expectthatthe richnessof real-world imageswould be
difficult to captureanalytically This motivatesalearning-basedp-
proachin atrainingset,learnthefine detailsthatcorrespondo dif-
ferentimageregionsseeratalow-resolutionthenusethosdearned
relationshipgo predictfine detailsin otherimagesFor thepastser-
eralyeard5, 6], we have beenexploringthisapproacHor enlaging
images.

To motivatewhy this approactshouldwork at all, notethata col-
lection of imagepixels are specialsignalswhich have muchless
variability thanwould a correspondingset of completelyrandom
variables.Researcherbave studiedtheseregularitiesto account
for the early processingstagesof the mammalianvisual systems
[4, 15]. We exploit theseregularitiesin our algorithmsaswell: we
usesmall piecesof oneimage,modifiedfor generalizatiorby the



Figure 2: (a) An image (100x100)of a real-world teapotshavs
a richnessof texture, but yields a blocky or blurredimagewhen
zoomedn by afactorof 8 in eachdimensiorby (b, c) pixel replica-
tion or (d, e) cubicsplineinterpolation(Imagegb) through(i) were
32x32pixel original sub-imageszoomedy 8 to 256x256mages).
Sharpeninghe cubicsplineinterpolationmay not helpto increase
theperceptuasharpnes§, g, using“sharpermore”in AdobePho-
toshop).(h, i) shav theresultsof our one-passupefresolutional-
gorithm,maintainingedgeandline sharpnessandplausibletexture
details.

appropriatg@re-processindo createplausibleémageinformationin
asecondmage Withoutvery specifictrainingdata,it is notreason-
ableto expectto generateahe correct high-resolutioninformation.
We aimfor themoreattainablegoalof generatingisually plausible
imagedetails,suchassharpedgesandplausiblelooking texture.
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Figure 3: Differentcomplementangpproachew increaseaheper
ceptualresolutionof animage.(a) Shavs schematicallthechange
in thespatialfrequeng amplitudespectrunof animageassociated
with image sharpening. Existinghigh frequenciesn theimageare
amplified.Thisis oftenusefulto do, providednoiseisn’t amplified,
but notthe subjectof supesresolution(b) Extractinga singlehigh-
resolutionframe from a sequencef low-resolutionvideo images
is useful,andis alsosometimeseferredto assupefresolution.(c)
Thesuperfresolutiongoal of this paperis to estimatemissinghigh-
resolutiondetailthatis notpresentn the originalimage,andwhich
cannotbe madevisible by simplesharpening.

3 Training set generation

To generat®urtrainingset,we startfrom a collectionof highreso-

lutionimagesanddegradeeachof themin amannercorresponding
to the degradationwe planto undoin theimageswe later process.
Typically, we blur and subsamplehemto createa low-resolution

imageof ;11 thenumberof original pixels.

We apply aninitial analyticinterpolation,suchascubic spline,to
thelow-resolutionimage.We only needto storethedifferencese-
tweena cubic splineinterpolationof the image,andthe true, high
resolutionimage.Figure4 (a) and(c) shaw low andhighresolution
versionof animage;(b) is theinitial up-interpolatior(bilinearwas
usedfor this example).

We wantto storethe high-resolutiorpatchcorrespondindo every
possibldow-resolutionmagepatchthesepatchesretypically 5x5
and7x7 pixels,respectiely. Evenrestrictingoursehesto plausible
imageinformation,thisis ahugeamountof informationto store,so
we needto pre-procestheimagesto remove variablitity andmale
thetrainingsetsasgenerallyapplicableaspossible.

We believe that the highestresolution componentsof the low-
resolutionimage(b) aremostimportantin predictingthe extra de-
tails presenin (c). We filter out the lowest-frequeng components
of (b), sothatwe don't have to storeexamplepatchedor all pos-
siblelowestfrequeng componentalues.We alsobelieve thatthe
relationshipbetweenrhigh andlow-resolutionimagepatchess es-
sentiallyindependenof localimagecontrastandwe don't wantto
have to storeexamplesof thatrelationshigfor all possiblevaluesof
the local imagecontrast.The resultingbandpas$iltered and con-
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Figure 4: Image pre-processingstepsfor training images.We
startfrom alow-resolutionimage,(a), andits corresopndindnigh-
resolutionsource(c). We form aninitial interpolation,(b), of the
low-resolutionmageto thehigherpixel samplingresolutionin the
training set, we storecorrespondingairs of patchesrom (f) and
(e), which arethe bandpas®r highpasdiltered and contrastnor
malizedversionof (b) and(c), respectiely. Thisprocessingllows
the samepatchpair examplesto applyin differentimagecontrasts
andlow-frequeny offsets.

trastnormalizedimagepairsusedfor trainingareshavn in Fig. 4
(d) and (e). We undothe contrastnormalizationstepuponrecon-
structionof the high-resolutionmage.

3.1 Markov network algorithm

If localimageinformationaloneweresuficientto predictthemiss-
ing high resolutiondetails,we shouldbe ableto usethe training
setpatchesby themseles for supefresolution.For a given input
imageto enlage, we would apply the pre-processingteps break
the imageinto patchesand look-up the missinghigh resolution
detail. Unfortunately that approachdoesnt work, asillustratedin
Fig. 5 (a); the high resolutiondetailimagelooks like oatmeal The
local patchaloneis not suficientto estimateplausiblelooking high
resolutiondetail.

Fig.5 (b) illustrateswhy. For agivenlow-resolutioninputpatch,we
searchedtypicaltrainingdatabasef about100,00(atchego find
the 16 closesiexamplego theinput patch,shavn in thesecondine
of Fig. 5 (b). Eachof theselooks fairly similar to the input patch.
The bottomrow shaws the high resolutiondetail correspondingo
eachof thesetraining examples;eachof thoselooks quite distinct
from the other This illustratesthatlocal patchinformationalone
is not suficient for supefresolution;spatialneighborhoodeffects
mustbetakeninto account.

We have modelledthe spatialrelationshipsetweenpatchesusing
aMarkov network, for whichwell-knovn usesn imageprocessing
include[7]. In Fig. 6, thecirclesrepresentetwork nodes,andthe
lines indicate statisticaldependenciebetweennodes.We let the
low-resolutionmagepatchedeobserationnodesy. We selecthe
16 or soclosesexamplesto eachinput patchasthe differentstates
of the hiddennodesx, thatwe seekto estimateFor this network,
the probability of any given high-resolutiorpatchchoicefor each
nodeis the productof all setsof compatibility matrices 1 relating
the possiblestatesof eachpair of neighboringhiddennodes,and
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Figure5: (a) Estimatechighfrequenciegor tigerimage(Fig. 4 (e)
arethetrue high frequenciesformedby substitutingthe high fre-
guenciesof the closesttraining patchto Fig. 4 (d). The lack of
a recognizableémageindicatesthat a nearestneighboralgorithm
is not suficient; spatial context mustalso be used.(b) An input
patch,and similar low-resolution(middle rows) and pairedhigh-
resolution(bottomrows) patchesFor mary of thesesimilar low-
resolutionpatchesthe high-resolutionpatchesare quite different,
reinforcingthelessorfrom (a) abore.

matricesp relatingeachobsenrationto theunderlyinghiddenstates.

To specifythe ¢ functionsof the Markov network, we usea sim-
ple trick. We samplethe nodesof the input image so that the
high-resolutionpatchesoverlap with eachother by one or more
pixels. In the region of overlap, the pixel valuesof compatible
neighboringpatchesshould agree.We measuredﬁb, the sum of
squareddifferencesbetweenpatchcandidates andj at nodesa
and b. The compatibility matrix betweennodesa and b is then

ab
da(i,j) = exp(— @ —-—), Where o is a noise parameterWe use
a similar quadratlcpenaltyon differencesbetweenthe obsered
low-resolutionmagepatch,andthe candidatdow-resolutionpatch
foundfrom thetrainingset,to specifythe Markov network compat-
ibility function, ).

The optimal high-resolutiorpatchesat eachnodeis thatcollection
which maximizesthe probabilty of the Markov network. Finding
the exact solutioncan be computationallyintractible,but we have
foundgoodresultsusingthe approximatesolutionobtainedby run-
ning afast,iterative algorithmcalledBelief PropagationTypically,
3 or 4 iterationsof thealgorithmaresuficient, seeFig. 7.

3.2 Single-passalgorithm

The fact that belief propagationcorverged to a solution of the
Markov network so quickly led usto believe the problemwasnot
adifficult one.We founda simpleone-passlgorithmwhich gives
resultshatarenearlyasgoodastheiterative solutionto theMarkov
network.
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Figure 6: Markov network modelfor supefresolutionproblem.

In our algorithm,we only computehigh resolutionpatchcompati-
bilities for neighboringpatcheghatarealreadyfixed, typically the
patchesabore andto theleft, in rasterscanorderprocessinglf we

pre-structurethe training dataproperly (Figure 11), matchingthe
locallow-resolutionimagedataaswell asselectinghe compatible
high resolutionpatchcandidatecan all be donein a single oper

ation: finding the nearesmneighborto a given input vectorin the
training set. The simplificationavoids stepsof finding the compat-
ibility matricesandtheiterative belief propagatioralgorithm,with

negligible reductionin imagequality.

Figure8 shavs animagezoomedwith supefresolution alongwith
the sameimage zoomedwith cubic spline andthe true high res-
olution image.At the bottomarethe imagesfrom the training set
usedn thesupetresolutionzoom.Thecentersectionshavsthede-
tails of afew patchesn thezoomedmageandtheir corresponding
bestmatchesn thetrainingset. Thetop andbottomrows shav the
imagecontentof the patchesn the superresolutionimageandthe
trainingset.Thesecondandfifth rows shav thelow resolutioncon-
trastnormalizedpatchesThe third row shavs the high resolution
contentof thetrue high resolutionimage,andthe fourth shawvs the
highresolutionpatchchoserby the supefresolutionalgorithm.Al-
thoughnotperfectthematchedbetweerthetrueandestimatecigh
resolutionpatchesarereasonablygood. Note that the algorithmis
able to malke useof training patchexamplesfrom sourceimage
regionsthatlook very differentthanthe regionswherethey arein-
sertedinto the zoomedimage.For example,the orangebordered
patchcorrespondso a shadav boundaryon wood in the training
image(of 3 girls), butis appliedto zoomup agreenplantocclusion
boundaryThebandpasé§ltering andcontrasnormalizatiorallows
for thisre-use which makesthetrainingsetmorepowerful.

4 Single-passalgorithm details

In thesimplesterms,one-passupefresolutiongeneratethemiss-
ing high frequeny contentof a zoomedimageas a sequencef
predictionsfrom local imageinformation. Theinputimageis sub-
divided into low-frequeng patcheswhich are traversedin raster
scanorder At eachstep,a high-frequeng patchis selectedrom
thetraining sethasedon the local low-frequenyg detailsaswell as
adjacentpreviously determinedigh-frequeng patches.

In thealgorithmsdescribedelav, (nonpredictie) scalingup of im-
agesis performedvia cubic splineinterpolation,andscalingdown
by convolving with a [0.25 0.5 0.25] blurring filter and subsam-
pling on the evenindices.([6] usedlinearinterpolationfor the up-
sampling,which putsmoreinterpolationburdenon the restof the
algorithm).

4.1 Prediction

Given the highest frequenciesin an input image, the supef
resolutionalgorithmpredictsthenext octare up,i.e.thefrequencies
missingfrom animagezoomedwith cubicinterpolation.The out-
put of the algorithmis the sumof its input andthe high frequeng
predictiongFigure9).

Thehighfrequenciesrepredictedfor NxN pixel patchestatime,

™ in rasterscanorder Eachpredictionis basedn two competingre-

quirementsFirst, the high frequeng patchshouldcomefrom a
locationin thetrainingimagethat hasa similar low-frequeng ap-
pearanceSecondthehigh-frequeng predictionshouldagreeatthe

’ ) edgef the patchwith its neighborsto preventdiscontinuities.

Thefirst requirementanbefulfilled by extractingalow-frequeny
patch(MxM, not necessarilythe samesize asthe high frequeng
patch)from the imagewe arezoomingandsearchingor a match
in the training setmadeup of pairs of low- and high-frequeng
patchesTo meettheseconctriterion,we overlappredictedpatches
at their borders(Figure 10). When searchinghe training set, the
high-frequeng datapreviously predictedis alsousedin selecting
the bestpair. A usercontrolledweighting factor« is usedto ad-
just the relative importanceof the low frequenyg patchversusthe
overlapwith highfrequeng patches.

The supefresolutionalgorithmoperatesinderthe assumptiorthat

thepredictive relationshipbetweerdow andhighfrequeng patches
is independenbf contrastandwe thereforenormalizepatchpairs

by theaverageabsolutesalueof thelow frequeng patch,acrosghe

colorchannelgplussomesmalle to avoid overflow).

The pixelsin low-frequeng patchandthe high-frequeng overlap
are concatenatedb form a searchvector The training setis also
storedasa setof vectors,so searchingor a matchcanbe accom-
plishedby finding the nearesneighborin thetraining set. Whena
matchis found, the contrastnormalizationis reversedon the high-
frequeny patch,andit is addedo theoutputimage(Figurel1).

4.1.1 Search algorithm

We searcifor matchesisinganL, norm.Dueto thehighdimension
of thesearctspacefinding the absolutebestmatchwould be com-
putationallyprohibitive. Instead we usea tree-basedapproximate
nearesineighborsearch.The treeis built by recursvely splitting
thetrainingsetin thedirectionof highervariation.At eachstepwe
divide the setof tilesin half, to maintaina balancedree.

We use“best-first” searchof the treeto find a good match.This
allows for a speed-qualityradeof. by searchingnorebranche®of
thetreewe canfind abettemrmatch Sincebest-firsisearchs unlikely
to give the true bestmatchwithout searchingmostor all of the
tree,we improve the best-firstmatchby a greedywalk in thegraph
connectingapproximatenearesneighborsn thetraining set. This
improves the matchwith negligible cost.In all examplesin this
paper we connecteachpatch pair to its 32 approximatenearest
neighborscomputedy a methodsimilarto [10].

4.2 Training

Trainingsetsfor thesupetresolutionalgorithmarebuilt from band-
passand highpassairstaken from a setof trainingimages.Spa-
tially corresponding/ixM low-frequeng andNxN high-frequeng
patchesaretaken from imagepairsat a setof samplinglocations
(usually M=7, N=5, andsamplesretakenat every pixel).

Patchpairsarecontrastnormalizedasdescribedabore. The search
vectorfor a patchpair is createcby the concatenatiomf the low-
frequenyg patchandtheregion thatwill be overlappedn the high-



frequenyg patchduring the predictionphase adjustedby the con-
sisteny weightingfactora (Figurell).

We usedthe samesetof trainingimagedor all the supefresolution
examplesn thispapershavn in Figurel2. They weretakenwith a
Nikon Coolpix 950digital cameraat 640x480resolutionandhigh-
estquality compressiosettings.

4.3 Parameter settings

Attentionto parametesettingscanimprove imagequality. For both

levelsof zooming we usedsx5 pixel high-resolutiorpatchegN=>5)

with 7x7 pixel low-resolutionpatcheM=7). The overlapbetween
adjacenthigh-resolutionpatcheswvas 1. Thesesettingsdo well to

capturesmalldetails.Largerpatchsizescanbeusedfor lessaccen-
tuationof smalldetails.

For amoreconserative estimateof the higherresolutiondetail,the
algorithmcanbe performed4 timesat staggereaffsetsrelative to

the patchsamplinggrid. This gives4 independengstimateof the
high frequencieswhich canthenbe averagedogether smoothing
someimagedetails.

The parametery controlsthe tradeof betweenmatchingthe low-
resolutionpatch dataand finding a high-resolutionpatchthat is

compatiblewith its neighborsThevaluea = 0-1% gave good
quality resultsin our experimentsThefractionadjustsfor therela-
tive areaf low-frequeng patchesandoverlappecigh-frequeng
pixels.

5 Results

Figuresl3andi14 shaws ouralgorithmappliedto abrick wall anda
mansface Thetrainingsetwastakenfromtheimagesn Figurel2.
Theresultingzoomsaresignificantlysharpethanthosefrom cubic
splineinterpolation preservingsharpedgesandimagedetails.

Figure15 shavs anexamplewhereour low-level trainingsetalone
is not enoughto distinguishJPEGcompressiomoisefrom correct
imagedata;thealgorithminterpretsheartifactsasimagedataand
enhanceshem. Extensionsof specializechigh-level modelssuch
as[2] couldbeneeded.

In a simpleexplorationof the relationof the zoomedimageto the
trainingimageqse€6] for others) we enlagedtheimageof Fig. 8
usinga pathologicatrainingsetof imagesof text. Nonethelesshe
algorithmdoesits bestto explaintheobseredlow-resolutionmage
in its vocalulary of text examples resultingin a zoomwith high
resolutiondetailformedout of concatenatedharactersfig. 16.

5.1 Discussion

Recentwork by Hertzmanret al [8] hasalsouseda training-based
methodto performsupesresolution,in the context of analogiede-
tweenimages Our methoddiffersin thatit operate®ntiles rather
thanperpixel, providing a performanceéenefit.It alsonormalizes
thetraining setaccordingto contrastandassumeshatthe highest
frequeny detailsin animagecanbe predictedusingonly the next
lower octave. Thesetwo generalizationgllow usto zoomawider
classof imageausingasingle,generidrainingset,ratherthanbeing
restrictedto operatingonimageshatarevery similarto thetraining
image.

A training-basedpproachwas usedby [11], but no attemptwas
madeto enforcethe spatialconsisteng constraintsnecessaryor
goodimagequality.

If well-known objectsaresparselysampledn theimage,animage
extrapolationbasednlocalimageevidencealonewill notproduce

the new detailsthat the viewer expects.Very small faceimages
are suseptableo this problem.To addresgheseproperly higher

level reasoningwould have to be addedto the algorithm. Baker

andKanad€2] have recentlyexploredsuperfresolutionalgorithms
tunedto a particularclassof imagessuchasfacesor text.

In thezoomed-upmages]ow-contrasdetailsnext to high contrast
edgesmay be lost, dueto the contrastnormalizationfixing on the

level of the high contrastdge Independentontrasinormalization
for differentimageorientationseachzoomedseparatelymight ad-

dressthis problem.However, it is not clearthata one-passmple-

mentationwould sufiice for thatmodification.

Finally, the algorithm works bestwhen the resolution or noise
degradationsof the datamatchthoseof the imagesto which it is
applied.

Numerically the root-mean-squaredrror from the true high fre-
guenciedendto be approximatelythe sameasfor the original cu-
bic splineinterpolation.Unfortunately this metrichasonly aloose
correlationwith percived imagequality [12]. Typical processing
times for the single-passalgorithm are two secondgo enlage a
100x100imageup to 200x200pixels.

We have focussedn the caseof enlaging singleimagesThecase
of enlaging moving imagesis differentin two respects(1) thereis

moreinput data;multiple obserationsof the samepixel could be
usedfor supesresolution.(2) Caremustbetakento ensurecoher

enceacrosssubsequenframesso that the made-upimagedetails
do notscintillatein themoving image.

6 Conclusions

Thereis a surprisingregularity acrossmages suchthata training
setmadefrom theimagesof Fig. 12 canbe usedto inventmissing
detailsin mary others(all thosein this paper) While a trainingset
tunedto theimageso be processedf courseworkshbestatraining
setof genericimagescanhandlea very broadclassof inputs.

We have built on the training-basedupefresolutionalgorithm of
[6], andintroduceda faster simpler and,we believe, betteralgo-
rithm for one-passuperfresolution.The algorithmrequiresonly a
nearest-neighbaearchn thetrainingsetfor avectordervedfrom
eachpatchof localimagedata.Thisone-passupefresolutioralgo-
rithm is a steptoward achieving resolutionindependenci image-
basedepresentations.

Thesealgorithmsare an instanceof a generaltraining-basedp-
proachthat may be usefulfor imageprocessingr graphicsappli-
cations(seeg[6, 14]). Training setscanbe built to helpenlageim-
ages remove noise,estimate3-d surface shapesand attackother
imagingapplications.
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(d) beliefpropagation

Figure 7: Belief propagatiorsolutionto Markov network for super
resolution.(a), (b), and(c) arethe estimatechigh frequenciesfter
0,1, and3 iterationsof belief propagation(d) is the estimatedull-
resolutionimage.(The inverseof the contrastnormalizationused
in Fig. 4 (d) was appliedto Fig. 7 (c). The resultwas addedto
Fig. 4 (b) to obtainFig. 7 (d)). Thetraining setfor thisimagewas
two cateyoriesof the Coreldatabasencludingothertigers,but not
thisimage[6].
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Figure 10: Patch centers, low-resolution and high-resolution
patches,and high-resolution patch overlap. The shadedhigh-
resolutionpatchehave alreadybeerprocessedindtheshadedirea
overlappeddy thecurrent(unshadedpatchareusedto enforcespa-
tial consisteng in the high-resolutiordetails.
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Figure 11: Block diagramshaving rasterorderperpatchprocess-
ing. At eachstep,local low- andhigh-frequeng details(shavn in
greenandred, respectiely) areusedto searchthe training setfor
anew high-frequeng patch,which is addedto the high-frequeng
image.



(d)
Figure 12: Training imagesusedfor the examplesof this paper
unlessotherwisestated.Patcheswere sampledat 1 pixel offsets
over eachof theseimagesand over their syntheticallygenerated
low-resolutioncounterpartgafter pre-processingteps).Thesesix
200x200imagesyieldedatrainingsetof slightly over 200,000high
andlow resolutionimagepatchpairs.

(d)

(e)

(®

Figure 13: Supefresolutioncanbe usedfor zoominginto texture-
mappedsurfaces(a) original texturein 52x52pixel bitmap.super
resolutionzoomedby 2 (b), by 4 (c) and by 8 (d) timesin each
dimension.Samelevel of zooming,using(e) cubic splineinterpo-
lation, and(f) Altamira GenuineFractalsproprietarysoftware.Our
superresolutionalgorithm invents sharp,plausibleimage details,
usingexamplespreviously obseredin thetrainingdatabase.



Figure 14: (a) Original image. (b) cubic spline interplation (c)
Supefresolutioninterpolation

Figure 15: Failure example.(a) originalimage.(b) and(d): cubic
splineinterpolationby factorof 4 in eachdimension.Note JPEG
compressiorartifacts madevisible. (c) and (e): one passsuper
resolutioninterpolation.Without high-level information,the algo-
rithm treatsthe JPEGnoiseassignal,andamplifiesit.
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(b)

Figure 16: Superresolutionexample using pathologicaltraining
setcomposecentirely of text in onefont; (a) is anexampleimage
from thetrainingset.(b) zoomedmage,and(c) close-upNotethat
thealgorithmdoesasbestasit canto inventplausibledetailfor this
image forming contoursby concatenatetétters.
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