-
ST2087: Single-Photon Lidar Algorithms
The Computational Sensing Team at MERL is seeking an intern to work on estimation algorithms for single-photon lidar. The candidate should have experience with statistical modeling and estimation theory. A detailed knowledge of single-photon detection, lidar, and/or Poisson processes is preferred. Hands-on optics experience is beneficial but not required. Strong programming skills in Python or Matlab are essential. Publication of the results produced during our internships is expected. The duration is anticipated to be 3-6 months.
- Research Areas: Applied Physics, Computational Sensing, Electronic and Photonic Devices, Signal Processing
- Host: Joshua Rapp
- Apply Now
-
ST2090: Radiation Source Localization
The Computational Sensing Team at MERL is seeking an intern to work on estimation algorithms for radioactive source localization. The candidate should have experience with statistical modeling and estimation theory. A detailed knowledge of interactions of particles with matter, imaging inverse problems, and/or computed tomography is preferred. Hands-on experience with high-energy physics simulators (e.g., Geant4) is beneficial but not required. Strong programming skills in Python are essential. Publication of the results produced during our internships is expected. The duration is anticipated to be 3-6 months.
- Research Areas: Applied Physics, Computational Sensing, Electronic and Photonic Devices, Signal Processing
- Host: Joshua Rapp
- Apply Now
-
EA2120: AI-assisted Design of Semiconductor Devices
We are seeking a graduate student interested in the research of AI-assisted design of semiconductor devices in general and GaN, SiC and Si IGBT in particular. The interns will collaborate with researchers at MERL and those in Japan to explore and develop new AI input models and methodology, and optimization methods, using both simulated and experimental data for the AI-assisted design of semiconductor devices. The ideal candidates are senior Ph.D. students with experience in semiconductor device physics, device modeling, deep learning, and other machine learning techniques, and the use of TCAD as a simulation tool. Those with deep knowledge of GaN, Si, and SiC devices and applications in RF and power electronics will be great assets. This internship's Start date is flexible and lasts 3-6 months.
- Research Areas: Electronic and Photonic Devices, Machine Learning
- Host: Koon Hoo Teo
- Apply Now