Internship Openings

3 / 23 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Qualified applicants for MERL internships are individuals who have or can obtain full authorization to work in the U.S. and do not require export licenses to receive information about the projects they will be exposed to at MERL. The U.S. government prohibits the release of information without an export license to citizens of several countries, including, without limitation, Cuba, Iran, North Korea and Syria (Country Groups E:1 and E:2 of Part 740, Supplement 1, of the U.S. Export Administration Regulations).

Rising to the challenges of COVID-19

MERL believes that having an internship be located in MERL's office allows for particularly good interaction between you and those that you will be working with at MERL. In addition, some intern projects, e.g., ones that require specialized laboratory equipment, can only be pursued in our office. Going forward, we expect that all internships will be in-person at MERL. If health and safety concerns do not permit this, we will reevaluate our plans and some internships might have to become remote.

It is a requirement at MERL that everyone working in MERL's space must be fully vaccinated. In order for you to have your internship at MERL, you will have to prove that you are fully vaccinated when you arrive at MERL, i.e., by showing your vaccination card.

  • MD1696: Advanced RF Technologies

    • Mitsubishi Electric Research Laboratories (Cambridge, MA) is seeking a highly motivated, qualified individual to join our 3 month internship program of research on advanced RF technologies. The ideal candidate should be a senior Ph.D. student with good experience in microwave power amplifier/RF active circuit design and experiment, RF front end systems. Familiarity with ADS and Matlab is required. Knowledge of radio system architecture and FPGA (signal processing) would be an asset.

    • Research Areas: Communications, Electronic and Photonic Devices, Signal Processing
    • Host: Koon Hoo Teo
    • Apply Now
  • CI1711: Advanced Network Design

    • MERL is seeking a highly motivated and qualified intern to join the Signal Processing Group for a three month internship program. The ideal candidate will be expected to carry out research on network design and optimization methods including AI assisted networking. The candidate is expected to develop innovative network configuration technologies to support emerging IoT applications. The candidates should have knowledge of network technologies such as network slicing, software defined networking and/or semantic networking. Knowledge of the communication technologies such as 3GPP-5G or IEEE 802 WLAN/WPAN standards is a plus. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply.

    • Research Areas: Communications, Control, Optimization
    • Host: Jianlin Guo
    • Apply Now
  • CI1733: ML for GNSS-based Applications

    • MERL is seeking a highly motivated, qualified intern to work on machine learning for Global Navigation Satellite System (GNSS) applications. The ideal candidate is working towards a PhD and is expected to develop innovative machine learning technologies to increase accuracy and integrity of GNSS-based positioning systems. Candidates should have strong knowledge about as many as possible of GNSS signal processing for multipath mitigation, handling RINEX data, neural network and learning techniques, such as feature extraction, deep machine learning, reinforcement learning, domain adaptation, and distributed learning. Proficient programming skills with PyTorch, Matlab, and C++, and strong mathematical analysis will be additional assets to this position. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply.

    • Research Areas: Communications, Dynamical Systems, Machine Learning, Signal Processing
    • Host: K.J. Kim
    • Apply Now