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Practical and Safe Navigation Function Based Motion Planning of UAVs

Himani Sinhmar1, Marcus Greiff2, Stefano Di Cairano3

Abstract— This paper offers a practical method for certifiably
safe operations of an unmanned aerial vehicle (UAV) with
limited power and computation, useful for real-time operations
where the UAV is exposed to significant disturbances in non-
convex free space. We propose a motion planning method based
on the Explicit Reference Governor (ERG) framework to ensure
the safety of a flying quadrotor UAV. From a small set of exper-
iment data and assumptions on modeling errors, a Lyapunov
function is synthesized by which an ERG is constructed to
modify the UAV set-points. The method can handle polyhedral
obstacles and constraints imposed on the maximum thrust of the
UAV and its maximum tilt. We demonstrate the approach with
extensive simulations and experiments using a Crazyflie 2.1.

I. INTRODUCTION

A fundamental aspect of motion planning (MP) is that the
robot must not only reach its goal but also satisfy a set of
constraints at all times in the presence of modeling errors and
disturbances. The constraints may include avoiding obstacles,
ensuring actuator bounds and other limits on the robot state.

An appealing approach is Model Predictive Control, where
optimal control problems are solved in a receding horizon
fashion [1], [2]. The main advantage of such optimization-
based approaches is that they optimize performance metrics
while ensuring constraint satisfaction. However, when im-
plemented on hardware with limited capabilities, the com-
putational cost may become prohibitive if the constraints are
non-linear and non-convex in the decision variables [3].

Recently, there has been a rising interest in incorporating
Control Barrier functions (CBFs) into planning frameworks
for safety-critical applications [4]–[6]. A CBF guarantees
that the system stays within a permissible set of states
indefinitely when choosing an admissible control input from
a given set [7]. However, this leads to one of the major
drawbacks of CBFs, which is that the resulting constraints
may lack a feasible solution if there are input constraints
(see, e.g., [8, Chapter 3]). In contrast, we seek feasibility
guarantees to ensure that safety is retained.

For this purpose, set-based path planning methods are
attractive. These approaches, akin to sampling-based algo-
rithms [9], [10], tackle path planning through a graph search.
Invariant-set motion planners (ISMP) in [11]–[14] incor-
porate closed-loop system dynamics into the search graph
using constraint admissible positive invariant (PI) sets. The
computational cost remains low for ISMP since the PI sets
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are based on time-invariant closed-loop dynamics, allowing
for offline computation of the graph. However, storing the
graph may require a prohibitive amount of memory.

An approach that avoids the computational burden of an
MPC, potential lack of feasibility of the CBF approach,
and memory issues in ISMP is the Reference Governor
(RG). This method enforces state and input constraints by
dynamically modifying set-points of systems that are pre-
stabilized [15]–[18]. In [19], [20] an Explicit Reference Gov-
ernor (ERG) is proposed to manipulate the rate of change of
the applied reference to the stabilizing controller. The ERG
design hinges on finding a dynamic margin and a navigation
field, given the knowledge of the environment. The dynamic
margin is a non-negative scalar function that determines the
maximum allowable rate of change for the reference without
violating the constraints. The navigation field specifies the
direction in which the reference should progress. In [21] the
authors propose to use vector field planners such as artificial
potentials [22], [23] and navigation functions [24] to ensure
the absence of local minima. Navigation functions [25]–
[29] offer theoretical guarantees for global convergence in
topologically spherical spaces but struggle with obstacles
featuring sharp corners, requiring complex parameter tuning
and hindering practical implementation [28, Sec. IV.B].

A major advantage of the ERG is that it can be imple-
mented in real-time on UAV hardware [12], [20]. However,
these prior works only consider spherical and cylindrical
obstacles in the environment, while treating the boundary as
a combination of planar walls. To guarantee the correctness
of the ERG in a bounded 3D environment cluttered with
polyhedral obstacles and non-spherical boundaries, we refine
the notion of safe navigation function. Additionally, we
develop the dynamic margin considering uncertainties that
arise from modeling errors as well as from partial knowledge
of closed-loop system characteristics.
Contributions: In this paper, motivated by system identifi-
cation, we extend the ERG framework proposed in [20] by
considering non-homogeneous controller gains. Furthermore,
we introduce a refined practical version of navigation func-
tions tailored for utilization within an environment contain-
ing polyhedral obstacles. We validate our proposed control
strategy both in simulations and in real-time on a small UAV.
Notation: Vectors are written x ∈ Rn, where [x]i is the ith
element of x, and ei is a unit vector [ei]i = 1. Id ∈ Rd×d

and 0 are the identity and zero-matrices, respectively. We let
∥x∥22 = x⊤x with ∥x∥2P = x⊤Px, and take (Sn+)Sn++ to be
the cone of n×n positive (semi)definite matrices. The set of
rotations is denoted SO(3). We let E ∼ U(W) be a uniform
selection of E ∈ W , and denote all convex combinations



of the elements in W by Co(W). The position and velocity
of the UAV are p ∈ R3 and v ∈ R3, respectively, r is a
reference modified by the ERG, and rG is a constant goal.

II. PROBLEM FORMULATION

In this section, the assumptions of the paper are stated with
a brief motivation based on experiment data before introduc-
ing the problem and giving some mathematical preliminaries.

Assumption 1 The translation motion of a closed-loop UAV
system can be modeled by second-order dynamics,

p̈ = −Kp(p− r)−Kvv +∆, (1)

where ∆ ∈ R3 is an unknown bounded disturbance and the
response is characterized by gains Kv ∈ S3++, Kp ∈ S3++.

Unlike [20], we do not assume perfect knowledge of
the gains defining the translational subsystem under ideal
conditions (∆ ≡ 0), nor do we assume these gains to have
uniform diagonals. Instead, we assume the following.

Assumption 2 The feedback gains are known such that

K = (Kp,Kv) ∈ Co({(Ki
p,K

i
v)}Ni=1) ≜ K, (2)

where Ki
p,K

i
v are diagonal matrices with positive entries.

To motivate the assumptions experimentally, we consider
data from multiple flights with a Crayflie 2.1 following a
sequence of target positions in space. We estimate the system
response by an extended Kalman filter from IMU and motion
capture data, and find the gains a grey-box identification [30],

Kp = diag(7.78, 7.38, 11.30), (3a)
Kv = diag(3.28, 3.27, 3.75). (3b)

Clearly, the system response in [p]3 is less damped and faster
than in the [p]1[p]2-plane, motivating both assumptions.
The modeling errors are bounded, and in this experiment,
we note that ∥∆∥2 ≤ 1.0 when ascribing all un-modeled
accelerations in (1) to ∆ subject to the parameters in (3).
However, there is some variability in the system response,
motivating uncertainty in the gains as per assumption A2.

Problem: We seek to control a UAV within a world boundary
S0 containing a set of M disjoint polyhedral obstacles Si.
The set F = S0\{Si}Mi=1 ⊆ R3 is referred to as the free-
space, and given assumptions A1, A2, the problem is to
compute a trajectory r : R+ 7→ R3 where:

• limt→∞ p(t) = rG for any (p(0), rG) ∈ F× F;
• p(t) ∈ F at all times t ≥ 0, thus retaining safety;
• the UAV thrust and tilt are both bounded at all times.

III. PRELIMINARIES

Assumption A2 guarantees that each controller in K is
stabilizing [31, Thm. 1]. By converse Lyapunov theory [32],

∃P ∈ S3++ such that V =∥xe∥2P , with V̇ ≤ −∥xe∥22, (4)

where x⊤
e = (p⊤−r⊤;v⊤). Furthermore, by the differential

independence of the positions induced by Assumption A2,
we can find such P with block-diagonal structure, that is

P =

[
Ppp Ppv
⋆ Pvv

]
, (5)

where Ppp,Ppv,Pvv ∈ S3++ are diagonal matrices. There-
fore, we compute a common Lyapunov function with block
diagonal structure, i.e., a single P by which (4) holds for
all K ∈ K. It is well known that the existence of such
a function is equivalent to the existence of a P ≻ 0 that
solves a Lyapunov equation for (1) characterized by the gains
{(Ki

p,K
i
v)}Ni=1. The computation of P can be formulated

as a semi-definite program and solved using tools such as
CVX [33] similar to [34, Chapter 6]. In the following, V is
a common Lyapunov function with a P structured as in (5).

IV. ERG FOR POLYHEDRAL WORKSPACES

In contrast with common RG schemes, the ERG in [19]
manipulates the derivative of the augmented reference ṙ
which is the product of two components, the vector field and
the dynamic margin. The vector field, ρ(r, rG), indicates
the direction towards which r(t) should evolve to ensure
convergence to rG. The dynamic margin is a function of the
current state of the UAV and the augmented reference. Its
value indicates how much we can change r, without violating
the constraints. The dynamic margin can be obtained by
translating constraints on the states and control signals to
constraints on the Lyapunov function, V ≤ Γ. The resulting
safety constraint can then be enforced by integrating the
reference according to,

ṙ(t) = κ(Γ(r)− V (p,v, r))ρ(r, rG), (6)

where κ ∈ R+ is an arbitrarily large scalar and affects the
stiffness of the resulting differential equation, and (Γ(r) −
V (p,v, r)) is the dynamic margin. In the following sections,
we delve into the details of computing both the dynamic
margin and the vector field, while considering the practical
implementation for UAVs.

V. VECTOR FIELD USING NAVIGATION FUNCTIONS

The objective of the navigation field is to generate a
continuous path in the free space F that connects the current
augmented reference r to the desired reference rG. For path
planning on smooth manifolds with boundaries, this is a well-
established technique [25]. However, in a polyhedral world,
the tangent space is not well defined everywhere [28].

A. Obstacle Inflation

To incorporate the body of the UAV and uncertainty in
the UAV control we inflate each obstacle in the environment
by a margin δ ∈ R+, which can be obtained by preliminary
experiments along the lines of [20]. Performing such inflation
enables planning for a point-mass robot.

B. Polyhedral obstacle

To construct a navigation function, the geometric data
for all the obstacles in the environment is assumed to be
known. We define an obstacle function βi:R3 7→ R for
each obstacle Si = {r:βi(r) ≤ 0}. This function is zero
for any point on the boundary of the associated obstacle,
and increases monotonically away from the obstacle. For a
smooth navigation function, it is required that the obstacle
function is continuous and differentiable. As illustrated in



[35], we can express βi as a boolean combination of linear
inequalities defining the half-planes of the polyhedron. But
this becomes prohibitively complex as the vertices of the
polyhedron increase. To deal with this [36] introduced a
modeling method by approximating a 3D cube as a squircle
resulting in a rounded and inflated cube, which is limiting.

Instead, we propose two different approaches that are not
based on an implicit representation of a polyhedron’s bound-
ary and the use of so-called purging transformations [36].
The first method is to find the closest point on the boundary
of a polyhedron, Si from a point r ∈ F by solving a
simple quadratic program (QP). The obstacle function is
then defined as the Euclidean distance between the two
points, that is, βi(r) = minq∈Sδ

i
∥r − q∥ where Sδ

i is the
Minkowski sum of the obstacle Si and a ball with radius δ.
However, to avoid solving the QPs online, we also propose
a simpler formulation where we compute the intersection
of a ray defined by the center of the polyhedron ci ∈ Si

and the point r with the polyhedron boundary, that is, let
the intersection point be q⋆, then βi(r) = ∥r − q⋆∥. Both
approaches ensure that the obstacle function is simple to
compute, and the latter one is faster but lacks the properties
required to give formal guarantees [28]. Nonetheless, it will
be shown to works well in the forthcoming experiments.

C. Polyhedral environment boundary

In the existing literature [25]–[29], the environment
boundary is mostly assumed to be disc-shaped, which works
well for workspaces in R2. For bounded workspaces in
R3, especially for indoor environments, we need to impose
constraints for both the floor and the ceiling. Hence, it makes
sense to consider a polyhedral boundary, here denoted by S0.
To compute an analogous obstacle function β0 we need to
find the distance between a point in the interior of S0 and
the boundary of S0, which is a non-convex problem. Instead,
we use Euclidean distances resulting from the point-center
ray intersection with the boundary, that is, β0(r) =

∥r−q⋆∥
∥c0−q⋆∥ .

D. Constructing diffeomorphisms

The navigation functions have an attractive property of
being invariant under a coordinate transformation. Therefore,
if we can find a diffeomorphism between the polyhedral
world and the spherical world, we can use the navigation
function, ψ, defined for a spherical world in (7) which is
guaranteed to have a single local minima at the goal point
for a sufficiently large value of k (see, e.g., [24]),

ψ̂(r) =
∥r − rG∥2

(∥r − rG∥2k +
∏M

i=0 βi(r))1/k
. (7)

In (7), the navigation function steepens when increasing k,
resulting in the critical points gravitating towards the goal
point and all the local minima turning into saddle points
near the obstacles. However, using a large value of k is not
always practically viable as it results in a gradient field that
varies abruptly, making it unsuitable for implementation in
real world as detailed in [28, Sec. IV.B]. We can avoid this
aggressive tuning of the navigation parameters by scaling

down the workspace to reduce the lower bound on k. To this
end, let the original polyhedral world be denoted by F∗, the
scaled polyhedral world by F , and the sphere world by M.

We propose two diffeomorphisms for implementing a
navigation field in a real setting, with hα and hλ, such that
F∗ hα−−→ F hλ−−→ M, where α ∈ (0, 1] is a scaling parameter
and hα(V ) = αV is a mapping that scales the vertices
V ∈ F∗ of all obstacles and environment boundary. We
use the diffeomorphism hλ as proposed in [29] such that all
the polyhedral obstacles are mapped to a Euclidean sphere
contained inside the corresponding polyhedron. Similarly, the
outer sphere is chosen sufficiently large that it contains the
boundary of the polyhedral workspace. We chose the goal
point in M to be rG. To summarize our setting,

hλ(r) = σrG(r, λ)rG +

M∑
i=0

σi(r, λ)Ti(r), (8a)

where for all i = 1, ...,M ,

σi(r, λ) =
γk(r)β̄i(r)

γk(r)β̄i(r) + λβi(r)
, (8b)

σrG(r, λ) = 1−
M∑
i=0

σi(r, λ), (8c)

Ti(r) = (1 + βi(r))
1/2ri

(r −wi)

∥r −wi∥
+wi (8d)

T0(r) = (1− β0(r))
1/2r0

(r −w0)

∥r −w0∥
+w0, (8e)

γk(r) = ∥r − rG∥2k , β̄i(r) =

M∏
j=0,j ̸=i

βj(r), (8f)

where wi is the center of the sphere corresponding to Si and
ri is the radius of the corresponding sphere. In principle,
the center wi can be anywhere inside the polyhedron Si,
but the placement of the sphere in M affects the resulting
navigation function. We have found that choosing wi close
to the geometric center ci of Si results in a sound navigation
field in the context of the geometry in Fig. 1.

1) Example: Intuitively, σi controls the influence of ith
obstacle as a function of space. On increasing the value of
λ, σi vanishes rapidly away from the obstacle as shown in
Fig 1. Hence, the influence of the obstacle is confined to
a small neighborhood about its boundaries. Fig. 2 illustrates
the two diffeomorphisms for a polyhedral workspace with
λ = 0.02 and α = 0.2 using geometries similar to those
that are considered in Sec. VII-VIII. The resulting navigation
function is then ψ = (ψ̂ ◦ hλ ◦ hα)(r), and Fig. 3 depicts
such a navigation field for a polyhedral world when k = 2.

Finally, the vector field as implemented in (6) is
ρ(r, rG) = − ∇ψ

∥∇ψ∥ . As can be seen in Fig. 3, the navigation
function can be flat in some regions, therefore, the gradient
must be normalized for operating the UAV in practice.

VI. COMPUTING THE DYNAMIC MARGIN

The ERG proposed in [20], considers (i) geometric con-
straints from obstacles in the environment and (ii) constraints
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Fig. 1. Obstacle β- and influence σ-functions in the scaled polyhedral
world F at a fixed z with obstacles and boundaries (gray). a – b Functions
associated with obstacle S5. c – d Functions associated with S0. All are two-
dimensional sections in a top-down view. See Fig. 5 for the 3D geometry.

F⋆ F M
hα hλ

Fig. 2. Diffeomorphisms from the polyhedral world F⋆ to the scaled world
F to sphere world M. A total of 104 points (dots) are sampled at z = 0.4.

Fig. 3. Level set of navigation field for a polyhedral scaled world of 5
obstacles (left) and the solution in the corresponding sphere world (right).
Note that the white regions near the obstacles are inflated due to the contour
plot not interpolating properly close to the boundary of the function domain.

on the maximum thrust of the UAV. Both require addi-
tional considerations when dealing with convex polyhedral
obstacles in R3 (Assumption A1) and non-uniform gains
(Assumption A2). We also consider (iii) a tilt constraint,
limiting the minimum rotation angle of the UAV. The three
constraints and their use in computing the dynamic margin
of the ERG are discussed in Sec. VI-A–VI-C. We give two
preliminary results to clarify the exposition.

Lemma 1 Let xe = (p⊤−r⊤;v⊤)⊤ and assume that there
exists a Lyapunov function V (p,v, r) = ∥xe∥2P . Given a

linear constraint c⊤p p+ c⊤v v ≤ d(r), if

Γ̄(r) =
(c⊤p r − d(r))2[
cp
cv

]⊤
P−1

[
cp
cv

] (9)

then V (p,v, r) ≤ Γ̄(r) ⇒ c⊤p p+ c⊤v v ≤ d(r).

Proof: This is an adaptation of [19, Proposition 1].
Lemma 1 allows imposing linear constraints on the states

and determine the maximal level sets V ≤ Γ̄ in which all
trajectories satisfy these constraints at all times, which is key
in defining the dynamic margin. However, we also need to
consider how to lower-bound the denominator of (9) in the
context of the polytopic uncertainty of assumption A2.

Lemma 2 Given assumption A2, let K̄ = diag(Kp,Kd)
and K̄i = diag(Ki

p,K
i
d). There exists λ > 0 such that[

u
u

]⊤
K̄P−1K̄

[
u
u

]
≤ λ ∀u ∈ S2, (10)

The smallest value of λ satisfying (10) independent of u is

minλ (11a)[
P K̄i

K̄i Λ

]
⪰ 0, ∀i = 1, .., N, (11b)[

λ11I λ12I
⋆ λ22I

]
= Λ, (11c)

λ11 + 2λ12 + λ22 = λ. (11d)

Proof: See appendix.

A. Polyhedral Geometries

To compute the dynamic margin for a polyhedral obstacle,
we assume a H-representation Si = {p : AS

i p ≤ bSi }. First
the Lyapunov function is projected onto the positional states
by taking the Schur complement Q = Ppp − PpvP−1

vv Pvp.
We then introduce a coordinate transform, p̄ = Q1/2(p−r),
whereby V (p, r,v) ≤ Γ̄ is implied by ∥p̄∥22 ≤ Γ̄. Next,
we apply the same linear transformation to the polyhedral
obstacles, yielding S̄i = {p̄ : ĀS

i p̄ ≤ b̄Si } where

ĀS
i = AS

i Q
−1/2, b̄Si = bSi −AS

i r. (12)

In the transformed coordinates, we solve

p̄⋆i = argmin
p̄∈S̄i

∥p̄∥22, ∀i ∈ 1, ...,M, (13)

and define a level set Γo
i = ∥p̄⋆i ∥22 associated with Si. If

p(0) ∈ F and r is chosen such that V ≤ Γo
i , then p(t) ∈

F ∀ t ≥ 0. Evaluating all Γo
i requires solving M QPs on each

time step. This can be done independently for each obstacle
and the computational cost thus scales linearly in M .

B. Thrust Constraints

The actuation of the UAV depends on the low-level con-
trollers. Here we consider a geometric PD controller imple-
mented as in [37]. When considering point stabilization, the
commanded thrust is f = (mge3−Kp(p−r)−Kdv)·Re3,
where R is the rotation of the UAV, and the objective is
to find an invariant set in which f ≤ fmax. This can be
done along the lines of [20], but becomes complicated if the
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Fig. 4. System response in simulation with disturbances. a – c Goal
positions rG (black, dashed), augmented reference r (gray) and the system
response p (blue) in the three positional dimensions with each time tsk at
which a new goal is chosen indicated in red. d Disturbances acting on the
accelerations of the UAV. e Maximal safe level set (blue) and Lyapunov
function (red), the dynamic margin is the difference of the two and strictly
positive. f The smallest distance between the UAV and any of the obstacles,
never crosses zero, and when approaching the obstacle around t = 16s, the
dynamic margin becomes small ensuring safe passage of the UAV.

gains don’t have uniform diagonal entries. Following [20]
and using Lemma 1 in combination with Lemma 2 we note
that if Γf = (fmax − mg)2m−2(λ⋆)−1 then V ≤ Γf ⇒
f(t) < fmax for all t ≥ 0 and any λ⋆ solving (11).

C. Tilt Constraints

We can bound the tilt of the UAV by the cosine of any
rotation angle about a vector in the plane spanned by e1e2.
Let θ = e3 ·Re3 ≥ θmin denote a bound on the cosine angle,
then Γθ = (fmaxθmin −mg)2m−2(λ⋆)−1 and we have that
V ≤ Γθ ⇒ θ(t) > θmin,∀t ≥ 0 for any λ⋆ that solves (11).

D. Dynamic Margin

Finally, the Lyapunov threshold is the most restrictive
value, Γ(r) = min({Γo

i }Mi=1∪{Γf ,Γθ}) and the correspond-
ing dynamic margin is then simply computed as Γ(r) −
V (p,v, r). In the implementation of (12) and (13) we
use ProxQP [38] to compute the maximal safe level sets
of V with a warm-start of the primal and dual variables to
the solution at the previous time step. The computation time
for solving the QPs online is minimal (≈ 3 − 5ms) and it
increases linearly with the number of obstacles.

VII. SIMULATIONS

To demonstrate the proposed safe navigation function
approach, we conduct a simulation using the simplified UAV
model in (1) with a polyhedral boundary S0 = [−0.5, 3.5]×
[−1.5, 2.5]× [0, 2] ⊂ R3 containing five polyhedral building-
like obstacles {Si}5i=1 that are to be avoided (see Fig. 5.a).
The UAV is to navigate to a target rG ∈ F, and upon reaching
this goal, a new goal is randomized as rG ∼ U(F).

The gain K is not known, but rather sampled from the set
K containing (3) in its interior, and Gaussian measurement
noise is added to the states at each time step, resulting in a
measured output yk ∼ N ((p⊤,v⊤)⊤),diag(σ2

pI3, σ
2
vI3)),

with σp = 0.05 and σv = 0.02. Furthermore, the dis-
turbance acting on the UAV is sampled from a Gaussian
process [∆(t)]i ∼ GP(0,k(t, t′)) with an exponential kernel
k(t, t′) = exp(0.5|t − t′|2), and each sample is scaled
such that supt ∥∆(t)∥2 = 1. This disturbance is far in
excess of what we are likely to see in practice. One of the
resulting simulations is shown in Fig. 4 showing the smallest
distance between the UAV and the obstacles dmin(p) =
mini minp̄∈Si ∥p̄− p∥2 in Fig. 4.f.
Discussion: In a large number of simulations, the UAV
remained safe at all times with a positive dynamic margin
(V ≤ Γ). But in some simulations, the navigation function
pushes very close to an obstacle, leading to a small dynamic
margin and very slow movement of the UAV (see Fig. 4.e
around 18s). This can be modified by tuning the navigation
function and further inflating the obstacles. Still, trajectories
that seem desirable in the sphere world, M, may not map to
similarly desirable trajectories in the polyhedral world, F .

VIII. EXPERIMENTS

The ERG was implemented as a ROS node and interfaced
with the CrazySwarm driver [39] to enable real-time op-
eration of the Crazyflie 2.1 UAV in Fig. 5.c. To account
for uncertainty in the system identification, the set K was
defined by N = 10 controllers containing (3) in its interior.
Computing the Lyapunov function as per Sec. III, yields

P =


7.05 0 0 0.59 0 0
0 6.64 0 0 0.56 0
0 0 11.60 0 0 0.79

0.59 0 0 1.07 0 0
0 0.56 0 0 1.06 0
0 0 0.79 0 0 1.19

 , (14)

and a maximal safe level set of min({Γf ,Γθ}) = 3.827
with respect to the thrust and tilt constraints, when fmax =
2mg [N] and θmin = 0.95 [rad]. Furthermore, bounding the
additive input disturbance at ∥∆∥2 ≤ 1 [m/s2] as motivated
by the system identification, we get a positional margin of
δ = 0.19 [m] by which the obstacles are inflated. The UAV is
set to track a sequence of randomly generated goals, where
if ∥p − rG∥ < 0.1, a new goal is sampled in free-space
rG ∼ U(F). The obstacles used in Sec VII were created
physically, and the response from a flight is shown in Fig. 5.
Discussion: Throughout the flight, it is verified the dynamic
margin is strictly positive, just as in the simulations, implying
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Fig. 5. System response from an experiment with the Crazyflie 2.1 UAV using the proposed ERG with data logged using a uSD card at 100Hz and
visualized in RVIZ. a The world consists of known polyhedral obstacles (red) and the UAV (in the green circle) is navigating through a sequence of 23
randomized goal points {rG(tsk) ∈ F}23k=1 (black). The resulting augmented reference trajectory r(t) and system response p(t) are shown in gray and
blue, respectively. The coordinate frames of the UAV {B} and the reference {R} are depicted at a single point in time. b Picture of the experiment setup
with the UAV (green circle). c Picture of the Crazyflie 2.1 used in the experiments. d – f Goal positions rG (black, dashed), augmented reference r
(gray) and the system response p (blue) in the three positional dimensions with each time tsk at which a new goal is chosen indicated in red.

that the system satisfies the constraints at all times. We note
that ERG gives rise to transients in the z-direction at certain
times, notably about t ∈ [40, 60] and t ∈ [220, 230]. This
behavior is also observed in the simulations and is an artifact
of how the navigation function is constructed. A drawback of
the method in [28], [29] is that it lacks optimality guarantees,
and as such, it may be interesting to explore the proposed
ERG mechanism in the context of other trajectories such
as potentially un-safe minimum snap trajectories [40], [41].
This is outside the scope of the paper and left as future work.

IX. CONCLUSION

In this paper, we investigate the explicit reference gover-
nor (ERG) proposed in [19]–[21] combined with classical
navigation functions based on sphere-world solutions [25].
To make these methods viable in practice, we considered
the case of polyhedral obstacles and structured uncertainty
in the non-uniform diagonal gains governing the dynamics
of the UAV, as motivated by a system identification. Both of
these developments were necessary to operate the Crazyflie
2.1. The resulting method provides certifiably safe opera-
tions of a UAV in non-convex free space with significant
input disturbances. Furthermore, it is more computationally

lightweight than an MPC solution (the optimization problems
are smaller), comes with guarantees of safety, and has a small
memory footprint, unlike the ISMPs.

APPENDIX

Let ū = (u⊤,u⊤)⊤. As K̄ and P are positive definite
and symmetric, K̄P−1K̄ ≻ 0, and there exist a bound
ū⊤K̄P−1K̄ū ≤ ū⊤Λū = λ. Furthermore, the largest class
of matrices Λ that yields a λ independent of u ∈ S2 is[
u
u

]⊤[
λ11I3 λ12I3
⋆ λ22I3

]
︸ ︷︷ ︸

≜Λ

[
u
u

]
=∥u∥22(λ11 + 2λ12 + λ22) = λ.

(15)
As such, we seek a matrix Λ, which is positive definite as
P ≻ 0 and K̄ ≻ 0. By Schur complements and convexity,

K̄P−1K̄ ⪯ Λ ⇔ Λ− K̄P−1K̄ ⪰ 0 (16a)

⇔
[
P K̄
K̄ Λ

]
⪰ 0 (16b)

⇐
[
P K̄i

K̄i Λ

]
⪰ 0, ∀i = 1, ..., N. (16c)

As such, the smallest gain λ can be found by its minimization
over (15) and (16), yielding the LMIs in Lemma 2.
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